Publications by authors named "Jared Klarquist"

Article Synopsis
  • The study investigated how B cell deficiency affects immune responses to SARS-CoV-2 mRNA vaccines in different groups, including healthy individuals and those with multiple sclerosis on B cell therapy.
  • Healthy pre-exposed individuals showed stronger immune responses, and Novavax boosters led to more robust serological responses than mRNA boosters.
  • Despite B cell depletion, individuals with multiple sclerosis maintained a strong IgA mucosal response and exhibited enhanced CD8 T cell responses, suggesting a regulatory relationship between B and CD8 T cells during vaccination.
View Article and Find Full Text PDF

Background & Aims: Lymphocytes that produce IL-17 can confer protective immunity during infections by pathogens, yet their involvement in inflammatory diseases is a subject of debate. Although these cells may perpetuate inflammation, resulting in tissue damage, they are also capable of contributing directly or indirectly to tissue repair, thus necessitating more detailed investigation. Mucosal-Associated-Invariant-T (MAIT) cells are innate-like T cells, acquiring a type III phenotype in the thymus.

View Article and Find Full Text PDF

T-bet and FOXO1 are transcription factors canonically associated with effector and memory T cell fates, respectively. During an infectious response, these factors direct the development of CD8 T cell fates, where T-bet deficiency leads to ablation of only short-lived effector cells, while FOXO1 deficiency results in selective loss of memory. In contrast, following adjuvanted subunit vaccination in mice, both effector- and memory-fated T cells are compromised in the absence of either T-bet or FOXO1.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) is a bioactive lipid which increases in concentration locally and systemically across different cancer types. Yet, the exact mechanism(s) of how LPA affects CD8 T cell immunosurveillance during tumor progression remain unknown. We show LPA receptor (LPAR) signaling by CD8 T cells promotes tolerogenic states via metabolic reprogramming and potentiating exhaustive-like differentiation to modulate anti-tumor immunity.

View Article and Find Full Text PDF

Objectives: While much of the research concerning factors associated with responses to immune checkpoint inhibitors (ICIs) has focussed on the contributions of conventional peptide-specific T cells, the role of unconventional T cells, such as mucosal-associated invariant T (MAIT) cells, in human melanoma remains largely unknown. MAIT cells are an abundant population of innate-like T cells expressing a semi-invariant T-cell receptor restricted to the MHC class I-like molecule, MR1, presenting vitamin B metabolites derived from bacteria. We sought to characterise MAIT cells in melanoma patients and determined their association with treatment responses and clinical outcomes.

View Article and Find Full Text PDF

The relationship between B cells and CD4 T cells has been carefully studied, revealing a collaborative effort in which B cells promote the activation, differentiation, and expansion of CD4 T cells while the so-called "helper" cells provide signals to B cells, influencing their class switching and fate. Interactions between B cells and CD8 T cells are not as well studied, although CD8 T cells exhibit an accelerated contraction after certain infections in B-cell-deficient mice. Here, we find that B cells significantly enhance primary CD8 T cell responses after vaccination.

View Article and Find Full Text PDF

The prior existence of human ACE2 protein-expressing mice used to study SARS-CoV and the rapid development of mouse-adapted virus strains have allowed the study of SARS-CoV-2 in mice, even as we are still learning about its natural pathology in humans. With myriad genetically altered strains on the C57BL/6 background and the abundance of immunological reagents available to interrogate its immune responses, the C57BL/6 mice may provide useful insight into the immunology of SARS-CoV-2 infection and vaccination. To conduct more detailed studies on their T cell responses to vaccines and infection, the epitopes eliciting those responses must be characterized in further detail.

View Article and Find Full Text PDF

Myriad studies have linked type I IFN to the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). Although increased levels of type I IFN are found in patients with SLE, and IFN blockade ameliorates disease in many mouse models of lupus, its precise roles in driving SLE pathogenesis remain largely unknown. In this study, we dissected the effect of type I IFN sensing by CD4 T cells and B cells on the development of T follicular helper cells (T), germinal center (GC) B cells, plasmablasts, and antinuclear dsDNA IgG levels using the bm12 chronic graft-versus-host disease model of SLE-like disease.

View Article and Find Full Text PDF

In contrast to responses against infectious challenge, T cell responses induced via adjuvanted subunit vaccination are dependent on interleukin-27 (IL-27). We show that subunit vaccine-elicited cellular responses are also dependent on IL-15, again in contrast to the infectious response. Early expression of interferon regulatory factor 4 (IRF4) was compromised in either IL-27- or IL-15-deficient environments after vaccination but not infection.

View Article and Find Full Text PDF
Article Synopsis
  • Eya proteins, particularly Eya3, are important for early development but can contribute to tumor growth when re-expressed in cancers, like breast cancer.
  • Eya3 promotes immune suppression in triple-negative breast cancer by stabilizing Myc, which in turn increases PD-L1 expression and reduces CD8+ T cell activity in the tumor microenvironment.
  • Targeting Eya3 could improve immune checkpoint therapies by reversing its effects on tumor progression and enhancing CD8+ T cell responses.
View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the disease spectrum in humans, including bridging hepatic fibrosis. Here we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high-fat diet (HFD)-induced NAFLD pathogenesis.

View Article and Find Full Text PDF

Sepsis is a life-threatening event predominantly caused by Gram-negative bacteria. Bacterial infection causes a pronounced macrophage (MΦ) and dendritic cell activation that leads to excessive pro-inflammatory cytokine IL-1β, IL-6 and TNF-α production (cytokine storm), resulting in endotoxic shock. Previous experimental studies have revealed that inhibiting NF-κB signaling ameliorates disease symptoms; however, the contribution of myeloid p65 in endotoxic shock remains elusive.

View Article and Find Full Text PDF

T regulatory cells (Treg) avert autoimmunity, but their increased levels in melanoma confer a poor prognosis. To explore the basis for Treg accumulation in melanoma, we evaluated chemokine expression in patients. A 5-fold increase was documented in the Treg chemoattractants CCL22 and CCL1 in melanoma-affected skin versus unaffected skin, as accompanied by infiltrating FoxP3 T cells.

View Article and Find Full Text PDF

An immunotherapeutic strategy is discussed supporting anti-tumor activity toward malignancies overexpressing ganglioside D3. GD3 can be targeted by NKT cells when derived moieties are presented in the context of CD1d. NKT cells can support anti-tumor responses by secreting inflammatory cytokines and through cytotoxicity toward CD1dGD3 tumors.

View Article and Find Full Text PDF

System lupus erythematosus (SLE) is a multifactorial systemic autoimmune disease with a wide variety of presenting features. SLE is believed to result from dysregulated immune responses, loss of tolerance of CD4 T cells and B cells to ubiquitous self-antigens, and the subsequent production of anti-nuclear and other autoreactive antibodies. Recent research has associated lupus development with changes in the dendritic cell (DC) compartment, including altered DC subset frequency and localization, overactivation of mDCs and pDCs, and functional defects in DCs.

View Article and Find Full Text PDF

We isolated gp100-reactive T cells from perilesional skin of a patient with progressive vitiligo with superior reactivity toward melanoma cells compared with tumor-infiltrating lymphocytes 1520, a melanoma-derived T-cell line reactive with the same cognate peptide. After dimer enrichment and limited dilution cloning, amplified cells were subjected to reverse transcription and 5' RACE to identify the variable TCRα and TCRβ subunit sequences. The full-length sequence was cloned into a retroviral vector separating both subunits by a P2A slippage sequence and introduced into Jurkat cells and primary T cells.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease with diverse clinical and immunological manifestations. Several spontaneous and inducible animal models mirror common components of human disease, including the bm12 transfer model. Upon transfer of bm12 splenocytes or purified CD4 T cells, C57BL/6 mice rapidly develop large frequencies of T follicular helper cells (Tfh), germinal center (GC) B cells, and plasma cells followed by high levels of circulating anti-nuclear antibodies.

View Article and Find Full Text PDF

Clinical complications of atherosclerosis are almost exclusively linked to destabilization of the atherosclerotic plaque. Batf3-dependent dendritic cells specialize in cross-presentation of necrotic tissue-derived epitopes to directly activate cytolytic CD8 Tcells. The mature plaque (necrotic, containing dendritic cells and CD8 Tcells) could offer the ideal environment for cross-presentation, resulting in cytotoxic immunity and plaque destabilization.

View Article and Find Full Text PDF

Adaptive immune responses to Ags released by dying cells play a critical role in the development of autoimmunity, allograft rejection, and spontaneous as well as therapy-induced tumor rejection. Although cell death in these situations is considered sterile, various reports have implicated type I IFNs as drivers of the ensuing adaptive immune response to cell-associated Ags. However, the mechanisms that underpin this type I IFN production are poorly defined.

View Article and Find Full Text PDF

To generate a mouse model of spontaneous epidermal depigmentation, parental h3TA2 mice, expressing both a human-derived, tyrosinase-reactive T-cell receptor on T cells and the matching HLA-A2 transgene, were crossed to keratin 14-promoter driven, stem cell factor transgenic (K14-SCF) mice with intra-epidermal melanocytes. In resulting Vitesse mice, spontaneous skin depigmentation precedes symmetrical and sharply demarcated patches of graying hair. Whereas the SCF transgene alone dictates a greater retinoic acid receptor-related orphan receptor gamma (RORγt)(+) T-cell compartment, these cells displayed markedly increased IL-17 expression within Vitesse mice.

View Article and Find Full Text PDF

Inducible HSP70 (HSP70i) chaperones peptides from stressed cells, protecting them from apoptosis. Upon extracellular release, HSP70i serves an adjuvant function, enhancing immune responses to bound peptides. We questioned whether HSP70i differentially protects control and vitiligo melanocytes from stress and subsequent immune responses.

View Article and Find Full Text PDF

Tumors that develop in lymphangioleiomyomatosis (LAM) as a consequence of biallelic loss of TSC1 or TSC2 gene function express melanoma differentiation antigens. However, the percentage of LAM cells expressing these melanosomal antigens is limited. Here, we report the overexpression of ganglioside D3 (GD3) in LAM.

View Article and Find Full Text PDF

The infiltration of melanoma lesions by dendritic cells (DCs) has been suggested to play a tumorigenic role due to the capacity of DCs to induce tumor tolerance and promote angiogenesis as well as metastasis. However, it has also been shown that tumor-infiltrating DCs (TIDCs) induce antitumor responses and hence may be targeted in cost-effective therapeutic approaches to obtain patient-specific DCs that present relevant tumor antigens, without the need for ex vivo DC expansion or tumor antigen identification. Unfortunately, little is known about the composition, nature and function of TIDCs found in human melanoma.

View Article and Find Full Text PDF