HIV-1 integrase multimerization inhibitors have recently been established as an effective class of antiretroviral agents due to their potent ability to inhibit viral replication. Specifically, quinoline-based inhibitors have been shown to effectively impair HIV-1 replication, highlighting the importance of these heterocyclic scaffolds. Pursuant of our endeavors to further develop a library of quinoline-based candidates, we have implemented a structure-activity relationship study of trisubstituted 4-arylquinoline scaffolds that examined the integrase multimerization properties of substitution patterns at the 4-position of the quinoline.
View Article and Find Full Text PDFA convenient two-step synthesis of ethyl 4-hydroxy-2-methylquinoline-3-carboxylate derivatives has been developed starting from commercially available 2-aminobenzoic acids. In step 1, the anthranilic acids are smoothly converted to isatoic anhydrides using solid triphosgene in THF. In step 2, the anhydride electrophiles are reacted with the sodium enolate of ethyl acetoacetate, generated from sodium hydroxide, in warm -dimethylacetamide resulting in the formation of substituted quinolines.
View Article and Find Full Text PDF