A transposon insertional mutagenesis spore library of the pathogen Bacillus anthracis was screened to identify mutants altered in germination kinetics. One mutant exhibited an accelerated rate of germination in association with disruption of benK. This gene encodes a putative protein with high homology to membrane transporters that facilitate benzoate transport.
View Article and Find Full Text PDFBacillus anthracis produces metabolically inactive spores. Germination of these spores requires germination-specific lytic enzymes (GSLEs) that degrade the unique cortex peptidoglycan to permit resumption of metabolic activity and outgrowth. We report the first crystal structure of the catalytic domain of a GSLE, SleB.
View Article and Find Full Text PDFThe Bacillus anthracis endospore loses resistance properties during germination when its cortex peptidoglycan is degraded by germination-specific lytic enzymes (GSLEs). Although this event normally employs several GSLEs for complete cortex removal, the SleB protein alone can facilitate enough cortex hydrolysis to produce vulnerable spores. As a means to better understand its enzymatic function, SleB was overexpressed, purified, and tested in vitro for depolymerization of cortex by measurement of optical density loss and the solubilization of substrate.
View Article and Find Full Text PDFBacterial spores remain dormant and highly resistant to environmental stress until they germinate. Completion of germination requires the degradation of spore cortex peptidoglycan by germination-specific lytic enzymes (GSLEs). Bacillus anthracis has four GSLEs: CwlJ1, CwlJ2, SleB, and SleL.
View Article and Find Full Text PDFThe structural characteristics of a spore enable it to withstand stresses that typically kill a vegetative cell. Spores remain dormant until small molecule signals induce them to germinate into vegetative bacilli. Germination requires degradation of the thick cortical peptidoglycan by germination-specific lytic enzymes (GSLEs).
View Article and Find Full Text PDF