The ability to predict the evolution of a pathogen would significantly improve the ability to control, prevent, and treat disease. Machine learning, however, is yet to be used to predict the evolutionary progeny of a virus. To address this gap, we developed a novel machine learning framework, named MutaGAN, using generative adversarial networks with sequence-to-sequence, recurrent neural networks generator to accurately predict genetic mutations and evolution of future biological populations.
View Article and Find Full Text PDFObjectives: This summary on Lassa virus (LASV) infection and Lassa fever disease (LF) was developed from a clinical perspective to provide clinicians with a condensed, accessible understanding of the current literature. The information provided highlights pathogenesis, clinical features, and diagnostics emphasizing therapies and vaccines that have demonstrated potential value for use in clinical or research environments.
Methods: We conducted an integrative literature review on the clinical and pathological features, vaccines, and treatments for LASV infection, focusing on recent studies and in vivo evidence from humans and/or non-human primates (NHPs), when available.
The early COVID-19 pandemic was characterized by rapid global spread. In Maryland and Washington, DC, United States, more than 2500 cases were reported within 3 weeks of the first COVID-19 detection in March 2020. We aimed to use genomic sequencing to understand the initial spread of SARS-CoV-2 - the virus that causes COVID-19 - in the region.
View Article and Find Full Text PDFBackground: The early COVID-19 pandemic has been characterized by rapid global spread. In the United States National Capital Region, over 2,000 cases were reported within three weeks of its first detection in March 2020. We aimed to use genomic sequencing to understand the initial spread of SARS-CoV-2, the virus that causes COVID-19, in the region.
View Article and Find Full Text PDFDengue virus infection elicits a spectrum of clinical presentations ranging from asymptomatic to severe disease. The mechanisms leading to severe dengue are not known, however it has been reported that the complement system is hyper-activated in severe dengue. Screening of complement proteins demonstrated that C1q, a pattern recognition molecule, can bind directly to dengue virus envelope protein and to whole dengue virus serotype 2.
View Article and Find Full Text PDFSaccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties.
View Article and Find Full Text PDFDengue is a globally expanding disease caused by infection with dengue virus (DENV) that ranges from febrile illness to acute disease with serious complications. Secondary infection predisposes individuals to more severe disease, and B lymphocytes may play a role in this phenomenon through production of Ab that enhance infection. To better define the acute B cell response during dengue, we analyzed peripheral B cells from an adult Brazilian hospital cohort with primary and secondary DENV infections of varying clinical severity.
View Article and Find Full Text PDFProductive virus infection requires evasion, inhibition, or subversion of innate immune responses. West Nile virus (WNV), a human pathogen that can cause symptomatic infections associated with meningitis and encephalitis, inhibits the interferon (IFN) signal transduction pathway by preventing phosphorylation of Janus kinases and STAT transcription factors. Inhibition of the IFN signal cascade abrogates activation of IFN-induced genes, thus attenuating an antiviral response.
View Article and Find Full Text PDFWest Nile virus (WNV) is responsible for thousands of cases of morbidity and mortality in birds, horses, and humans. Epidemics were localized to Europe, Africa, the Middle East, and parts of Asia, and primarily caused a mild febrile illness in humans. In the late 1990s, the virus became more virulent and spread to North America.
View Article and Find Full Text PDFWest Nile virus (WNV) is a human pathogen that can cause symptomatic infections associated with meningitis and encephalitis. Previously, we demonstrated that replication of WNV inhibits the interferon (IFN) signal transduction pathway by preventing the accumulation of phosphorylated Janus kinase 1 (JAK1) and tyrosine kinase 2 (Tyk2) (J. T.
View Article and Find Full Text PDFAdenovirus replication is controlled by the relocalization or modification of nuclear protein complexes, including promyelocytic leukemia protein (PML) nuclear domains and the Mre11-Rad50-Nbs1 (MRN) DNA damage machinery. In this study, we demonstrated that the E4 ORF3 protein effects the relocalization of both PML and MRN proteins to similar structures within the nucleus at early times after infection. These proteins colocalize with E4 ORF3.
View Article and Find Full Text PDFAdenovirus early proteins E4 ORF3 and E4 ORF6 have complementary functions during viral infection. Both proteins facilitate efficient viral DNA replication, late protein expression, and prevention of concatenation of viral genomes. Additionally, E4 ORF6 is involved in the shutoff of the host cell protein synthesis through its interaction with the E1B 55K protein.
View Article and Find Full Text PDF