Publications by authors named "Jared Coffin Talbot"

Both Fras1 and Itga8 connect mesenchymal cells to epithelia by way of an extracellular 'Fraser protein complex' that functions in signaling and adhesion; these proteins are vital to the development of several vertebrate organs. We previously found that zebrafish fras1 mutants have craniofacial defects, specifically, shortened symplectic cartilages and cartilage fusions that spare joint elements. During a forward mutagenesis screen, we identified a new zebrafish mutation, b1161, that we show here disrupts itga8, as confirmed using CRISPR-generated itga8 alleles.

View Article and Find Full Text PDF

During development of the mouse forebrain interneurons, the Dlx genes play a key role in a gene regulatory network (GRN) that leads to the GABAergic phenotype. Here, we have examined the regulatory relationships between the ascl1a, dlx, and gad1b genes in the zebrafish forebrain. Expression of ascl1a overlaps with dlx1a in the telencephalon and diencephalon during early forebrain development.

View Article and Find Full Text PDF

Lesions in the epithelially expressed human gene FRAS1 cause Fraser syndrome, a complex disease with variable symptoms, including facial deformities and conductive hearing loss. The developmental basis of facial defects in Fraser syndrome has not been elucidated. Here we show that zebrafish fras1 mutants exhibit defects in facial epithelia and facial skeleton.

View Article and Find Full Text PDF

The Dlx genes encode a family of transcription factors important for the development of the vertebrate forebrain. These genes have very similar expression domains during the development of the telencephalon in mice and play a role in gamma-aminobutyric acid (GABAergic) interneuron differentiation. We have used triple fluorescent in situ hybridization to study the relative expression domains of the dlx and gad1 genes in the zebrafish telencephalon and diencephalon.

View Article and Find Full Text PDF

The ventrally expressed secreted polypeptide endothelin1 (Edn1) patterns the skeleton derived from the first two pharyngeal arches into dorsal, intermediate and ventral domains. Edn1 activates expression of many genes, including hand2 and Dlx genes. We wanted to know how hand2/Dlx genes might generate distinct domain identities.

View Article and Find Full Text PDF

Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis.

View Article and Find Full Text PDF

Endothelin1 (Edn1) signaling promotes ventral character to the facial skeleton. In zebrafish edn1 mutants, the ventral jaw structures are severely reduced and fused to their dorsal counterparts, with a loss of joints that normally form at an intermediate dorsal-ventral position. Loss of function at another locus, sturgeon, also yields joint losses, but only mild reductions in the ventral jaw structures.

View Article and Find Full Text PDF