Prog Retin Eye Res
November 2016
The rod cell has an extraordinarily specialized structure that allows it to carry out its unique function of detecting individual photons of light. Both the structural features of the rod and the metabolic processes required for highly amplified light detection seem to have rendered the rod especially sensitive to structural and metabolic defects, so that a large number of gene defects are primarily associated with rod cell death and give rise to blinding retinal dystrophies. The structures of the rod, especially those of the sensory cilium known as the outer segment, have been the subject of structural, biochemical, and genetic analysis for many years, but the molecular bases for rod morphogenesis and for cell death in rod dystrophies are still poorly understood.
View Article and Find Full Text PDFMethods Mol Biol
December 2015
The connecting cilium of the rod photoreceptor is a tubular structure that bridges two adjacent cellular compartments, the inner segment, the major site of biosynthesis and energy metabolism, and the outer segment, a highly specialized ciliary structure responsible for phototransduction. The connecting cilium allows for active processes of protein sorting and transport to occur between them. Mutations affecting the cargo, their transporters, and the structural components of the primary cilium and basal body lead to aberrant trafficking and photoreceptor cell death.
View Article and Find Full Text PDFComprising 10(11) neurons with 10(14) synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume.
View Article and Find Full Text PDFDefects in primary cilia lead to devastating disease because of their roles in sensation and developmental signaling but much is unknown about ciliary structure and mechanisms of their formation and maintenance. We used cryo-electron tomography to obtain 3D maps of the connecting cilium and adjacent cellular structures of a modified primary cilium, the rod outer segment, from wild-type and genetically defective mice. The results reveal the molecular architecture of the cilium and provide insights into protein functions.
View Article and Find Full Text PDFIn order to identify candidate cation channels important for retinal physiology, 28 TRP channel genes were surveyed for expression in the mouse retina. Transcripts for all TRP channels were detected by RT-PCR and sequencing. Northern blotting revealed that mRNAs for 12 TRP channel genes are enriched in the retina.
View Article and Find Full Text PDF