Publications by authors named "Jared B Ellenbogen"

Methane mitigation is regarded as a critical strategy to combat the scale of global warming. Currently, about 40% of methane emissions originate from microbial sources, which is causing strategies to suppress methanogens, either through direct toxic effects or by diverting their substrates and energy, to gain traction. Problematically, current microbial methane mitigation knowledge derives from rumen studies and lacks detailed microbiome-centered insights, limiting translation across ecosystems.

View Article and Find Full Text PDF

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch.

View Article and Find Full Text PDF
Article Synopsis
  • Wetlands produce a lot of methane (a type of gas), but scientists don't fully understand how the tiny organisms in these areas work, which makes it hard to know how much methane will be released as the climate changes.
  • Researchers studied a special wetland in Sweden called Stordalen Mire and discovered that many microbes there can create methane using different sources, like certain chemicals found in the water.
  • This study shows that both methane-producing and methane-using bacteria are important for understanding how gases are emitted from wetlands, especially as permafrost (frozen ground) thaws due to climate change.
View Article and Find Full Text PDF
Article Synopsis
  • The gut microbiome influences human health by metabolizing quaternary amines found in protein-rich foods, which can contribute to atherosclerotic heart disease.
  • The research aims to fill knowledge gaps about how gut microorganisms and their genes impact the processes that either promote or reduce atherosclerosis.
  • An open-access database, the Methylated Amine Gene Inventory of Catabolism, was created, revealing that gut microbial genes can predict disease, potentially leading to new diagnostic and treatment approaches.
View Article and Find Full Text PDF

Life can be stressful. One way to deal with stress is to simply wait it out. Microbes do this by entering a state of reduced activity and increased resistance commonly called 'dormancy'.

View Article and Find Full Text PDF

The production of trimethylamine (TMA) from quaternary amines such as l-carnitine or γ-butyrobetaine (4-(trimethylammonio)butanoate) by gut microbial enzymes has been linked to heart disease. This has led to interest in enzymes of the gut microbiome that might ameliorate net TMA production, such as members of the MttB superfamily of proteins, which can demethylate TMA (e.g.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioneqt17tp5uujfsq98kee3vkelqj076c4m): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once