Publications by authors named "Jared B Bowden"

Long-term potentiation (LTP) has become a standard model for investigating synaptic mechanisms of learning and memory. Increasingly, it is of interest to understand how LTP affects the synaptic information storage capacity of the targeted population of synapses. Here, structural synaptic plasticity during LTP was explored using three-dimensional reconstruction from serial section electron microscopy.

View Article and Find Full Text PDF

Microtubules deliver essential resources to and from synapses. Three-dimensional reconstructions in rat hippocampus reveal a sampling bias regarding spine density that needs to be controlled for dendrite caliber and resource delivery based on microtubule number. The strength of this relationship varies across dendritic arbors, as illustrated for area CA1 and dentate gyrus.

View Article and Find Full Text PDF

An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite.

View Article and Find Full Text PDF

Because long-term potentiation (LTP) and long-term depression (LTD) are thought to be involved in learning and memory, it is important to delineate factors that modulate their induction and persistence, especially as studied in freely moving animals. Here, we investigated the effects of rat strain, circadian cycle, and high-frequency stimulation (HFS) pattern on LTP and concurrently induced LTD in the dentate gyrus (DG). Comparison of two commonly used rat strains revealed that medial perforant path field EPSP-population spike (E-S) coupling and LTP were greater in Long-Evans than Sprague-Dawley rats.

View Article and Find Full Text PDF