Publications by authors named "Jardine P"

Double-stranded DNA viruses actively package their genomes into pre-assembled protein capsids using energy derived from virus-encoded ASCE ATPase ring motors. Single molecule experiments in the aughts and early 2010s demonstrated that these motors are some of the most powerful molecular motors in nature, and that the activities of individual subunits around the ATPase ring motor are highly coordinated to ensure efficient genome encapsidation. While these studies provided a comprehensive kinetic scheme describing the events that occur during packaging, the physical basis of force generation and subunit coordination remained elusive.

View Article and Find Full Text PDF

Grass-dominated biomes in South America comprise c. 20 million years of history, yet their evolution and underlying drivers remain poorly understood. Here we apply a novel approach that combines scanning electron microscopy imaging with computational analysis to quantify the morphometrics of grass (Poaceae) pollen micro-ornamentation from the Neotropics since the Early Miocene (23 million years ago).

View Article and Find Full Text PDF

Objectives: We aimed to study the risks of relapse and long term disability in children with non-MS acquired demyelinating syndromes (ADS).

Methods: In this prospective, multi-centre study, from the 14 UK pediatric neurology centres, children (<16 years) experiencing a first episode of ADS were recruited from 2010 to 2014. Case report forms were collected prospectively.

View Article and Find Full Text PDF

Seddon and Zimmermann have raised questions about the evidence for increased UV-B flux across the end-Permian mass extinction (EPME) that was presented in our recent study, specifically regarding the measurement of UV-B-absorbing compound (UAC) levels in fossil pollen. We respond to these points, arguing that the comparison of FTIR spectra of >250 million-year-old Permian fossil pollen with ~700-year-old subfossil pollen is not valid and that negligible nonrandom interference derived from water vapor fluctuations during data generation cannot coincidentally produce a substantial UAC peak during the EPME. Furthermore, we refute the suggestion that the measured aromatic peak at 1600 cm could have been influenced by diagenetic products from other organic constituents of pollen.

View Article and Find Full Text PDF

Objective: To investigate the characteristics of particle generation and dispersion during dental procedure using digital inline holography (DIH) METHODS: Particles at two locations, near-field and far-field, which represent the field closer to the procedure location and within 0.5 m from the procedure location respectively, are studied using two different DIH systems. The effect of three parameters namely rotational speed, coolant flow rate, and bur angle on particle generation and dispersion are evaluated by using 10 different operating conditions.

View Article and Find Full Text PDF

Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers.

View Article and Find Full Text PDF

Many viruses eject their DNA via a nanochannel in the viral shell, driven by internal forces arising from the high-density genome packing. The speed of DNA exit is controlled by friction forces that limit the molecular mobility, but the nature of this friction is unknown. We introduce a method to probe the mobility of the tightly confined DNA by measuring DNA exit from phage phi29 capsids with optical tweezers.

View Article and Find Full Text PDF

Land plants can adjust the concentration of protective ultraviolet B (UV-B)-absorbing compounds (UACs) in the outer wall of their reproductive propagules in response to ambient UV-B flux. To infer changes in UV-B radiation flux at Earth's surface during the end-Permian mass extinction, we analyze UAC abundances in ca. 800 pollen grains from an independently dated Permian-Triassic boundary section in Tibet.

View Article and Find Full Text PDF

Many essential cellular processes rely on substrate rotation or translocation by a multi-subunit, ring-type NTPase. A large number of double-stranded DNA viruses, including tailed bacteriophages and herpes viruses, use a homomeric ring ATPase to processively translocate viral genomic DNA into procapsids during assembly. Our current understanding of viral DNA packaging comes from three archetypal bacteriophage systems: cos, pac and phi29.

View Article and Find Full Text PDF

The gp16 ATPase is the constituent subunit of the pentameric dsDNA (double-stranded deoxyribonucleic acid) translocation motor of the Bacillus subtilis Φ29 bacteriophage. Although recent single-molecule studies have provided tantalizing clues about the activity of this motor, the mechanism by which the gp16 subunits couple the energy obtained from the binding and hydrolysis of ATP to the mechanical work of dsDNA translocation remains unknown. To address this need, we have characterized the binding of fluorophore-labeled ATP and ADP to monomeric gp16 using a stopped-flow fluorescence assay.

View Article and Find Full Text PDF

Morphological diversity (disparity) is a key component of biodiversity and increasingly a focus of botanical research. Despite the wide range of morphologies represented by pollen grains, to date there are few studies focused on the controls on pollen disparity and morphospace occupation, and fewer still considering these parameters in a phylogenetic framework. Here, we analyse morphospace occupation, disparity and rates of morphological evolution in Asterales pollen, in a phylogenetic context.

View Article and Find Full Text PDF

Background: Dental procedures often produce aerosols and spatter, which have the potential to transmit pathogens such as severe acute respiratory syndrome coronavirus 2. The existing literature is limited.

Methods: Aerosols and spatter were generated from an ultrasonic scaling procedure on a dental manikin and characterized via 2 optical imaging methods: digital inline holography and laser sheet imaging.

View Article and Find Full Text PDF

Ring ATPases that translocate disordered polymers possess lock-washer architectures that they impose on their substrates during transport via a hand-over-hand mechanism. Here, we investigate the operation of ring motors that transport ordered, helical substrates, such as the bacteriophage ϕ29 dsDNA packaging motor. This pentameric motor alternates between an ATP loading dwell and a hydrolysis burst wherein it packages one turn of DNA in four steps.

View Article and Find Full Text PDF

Double-stranded DNA viruses package their genomes into pre-assembled capsids using virally-encoded ASCE ATPase ring motors. We present the first atomic-resolution crystal structure of a multimeric ring form of a viral dsDNA packaging motor, the ATPase of the asccφ28 phage, and characterize its atomic-level dynamics via long timescale molecular dynamics simulations. Based on these results, and previous single-molecule data and cryo-EM reconstruction of the homologous φ29 motor, we propose an overall packaging model that is driven by helical-to-planar transitions of the ring motor.

View Article and Find Full Text PDF

Molecular segregation and biopolymer manipulation require the action of molecular motors to do work by applying directional forces to macromolecules. The additional strand conserved E (ASCE) ring motors are an ancient family of molecular motors responsible for diverse biological polymer manipulation tasks. Viruses use ASCE segregation motors to package their genomes into their protein capsids and provide accessible experimental systems due to their relative simplicity.

View Article and Find Full Text PDF

Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate-switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases.

View Article and Find Full Text PDF

Double-stranded DNA viruses use ATP-powered molecular motors to package their genomic DNA. To ensure efficient genome encapsidation, these motors regulate functional transitions between initiation, translocation, and termination modes. Here, we report structural and biophysical analyses of the C-terminal domain of the bacteriophage phi29 ATPase (CTD) that suggest a structural basis for these functional transitions.

View Article and Find Full Text PDF

Packaging of phage phi29 genome requires the ATPase gp16 and prohead RNA (pRNA). The highly conserved pRNA forms the interface between the connector complex and gp16. Understanding how pRNA interacts with gp16 under packaging conditions can shed light on the molecular mechanism of the packaging motor.

View Article and Find Full Text PDF

During the assembly of dsDNA viruses such as the tailed bacteriophages and herpesviruses, the viral chromosome is compacted to near crystalline density inside a preformed head shell. DNA translocation is driven by powerful ring ATPase motors that couple ATP binding, hydrolysis, and release to force generation and movement. Studies of the motor of the bacteriophage phi29 have revealed a complex mechanochemistry behind this process that slows as the head fills.

View Article and Find Full Text PDF

is a halophytic taxon (i.e., adapted to saline environments) that belongs to the plant family Nitrariaceae and is distributed from the Mediterranean, across Asia into the south-eastern tip of Australia.

View Article and Find Full Text PDF

Subunits in multimeric ring-shaped motors must coordinate their activities to ensure correct and efficient performance of their mechanical tasks. Here, we study WT and arginine finger mutants of the pentameric bacteriophage φ29 DNA packaging motor. Our results reveal the molecular interactions necessary for the coordination of ADP-ATP exchange and ATP hydrolysis of the motor's biphasic mechanochemical cycle.

View Article and Find Full Text PDF

The bottom-up construction of biological entities from genetic information provides a broad range of opportunities to better understand fundamental processes within living cells, as well as holding great promise for the development of novel biomedical applications. Cell-free transcription-translation (TXTL) systems have become suitable platforms to tackle such topics because they recapitulate the process of gene expression. TXTL systems have advanced to where the construction of viable, complex, self-assembling deoxyribonucleic acid-programmed biological entities is now possible.

View Article and Find Full Text PDF

Tracking changes in biodiversity through time requires an understanding of the relationship between modern diversity and how this diversity is preserved in the fossil record. Fossil pollen is one way in which past vegetation diversity can be reconstructed. However, there is limited understanding of modern pollen-vegetation diversity relationships from biodiverse tropical ecosystems.

View Article and Find Full Text PDF

A new generation of cell-free transcription-translation (TXTL) systems, engineered to have a greater versatility and modularity, provide novel capabilities to perform basic and applied sciences in test tube reactions. Over the past decade, cell-free TXTL has become a powerful technique for a broad range of novel multidisciplinary research areas related to quantitative and synthetic biology. The new TXTL platforms are particularly useful to construct and interrogate biochemical systems through the execution of synthetic or natural gene circuits.

View Article and Find Full Text PDF