Publications by authors named "Jara Radeck"

Bacterial resistance against antibiotics often involves multiple mechanisms that are interconnected to ensure robust protection. So far, the knowledge about underlying regulatory features of those resistance networks is sparse, since they can hardly be determined by experimentation alone. Here, we present the first computational approach to elucidate the interplay between multiple resistance modules against a single antibiotic and how regulatory network structure allows the cell to respond to and compensate for perturbations of resistance.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Upon starvation, the soil bacterium Bacillus subtilis forms an intracellular, metabolically inactive endospore. Its core contains the DNA, encased by three protein layers protecting it against a multitude of environmental threats. The outermost layer, the crust, harbors great potential as a protein-displaying platform: a gene of interest can be translationally fused to a crust protein gene, resulting in endospores displaying the desired protein on their surface.

View Article and Find Full Text PDF

The bacterial cell wall separates the cell from its surrounding and protects it from environmental stressors. Its integrity is maintained by a highly regulated process of cell wall biosynthesis. The membrane-located lipid II cycle provides cell wall building blocks that are assembled inside the cytoplasm to the outside for incorporation.

View Article and Find Full Text PDF

Standardized and well-characterized genetic building blocks allow the convenient assembly of novel genetic modules and devices, ensuring reusability of parts and reproducibility of experiments. In the first Bacillus subtilis-specific toolbox using the BioBrick standard, we presented integrative vectors, promoters, reporter genes and epitope tags for this Gram-positive model bacterium. With the Bacillus BioBrick Box 2.

View Article and Find Full Text PDF

Bacillus subtilis combines natural competence for genetic transformation with highly efficient homologous recombination. These features allow using vectors that integrate into the genome via double homologous recombination. So far, their utilization is restricted by the fixed combination of resistance markers and integration loci, as well as species- or strain-specific regions of homology.

View Article and Find Full Text PDF

The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall.

View Article and Find Full Text PDF

Protection against antimicrobial peptides (AMPs) often involves the parallel production of multiple, well-characterized resistance determinants. So far, little is known about how these resistance modules interact and how they jointly protect the cell. Here, we studied the interdependence between different layers of the envelope stress response of Bacillus subtilis when challenged with the lipid II cycle-inhibiting AMP bacitracin.

View Article and Find Full Text PDF

Unlabelled: Sensing of and responding to environmental changes are of vital importance for microbial cells. Consequently, bacteria have evolved a plethora of signaling systems that usually sense biochemical cues either via direct ligand binding, thereby acting as "concentration sensors," or by responding to downstream effects on bacterial physiology, such as structural damage to the cell. Here, we describe a novel, alternative signaling mechanism that effectively implements a "flux sensor" to regulate antibiotic resistance.

View Article and Find Full Text PDF

Background: Standardized and well-characterized genetic building blocks are a prerequisite for the convenient and reproducible assembly of novel genetic modules and devices. While numerous standardized parts exist for Escherichia coli, such tools are still missing for the Gram-positive model organism Bacillus subtilis. The goal of this study was to develop and thoroughly evaluate such a genetic toolbox.

View Article and Find Full Text PDF

Ralstonia solanacearum is a devastating bacterial phytopathogen with a broad host range. Ralstonia solanacearum injected effector proteins (Rips) are key to the successful invasion of host plants. We have characterized Brg11(hrpB-regulated 11), the first identified member of a class of Rips with high sequence similarity to the transcription activator-like (TAL) effectors of Xanthomonas spp.

View Article and Find Full Text PDF

The light-harvesting complex, LH1, of thermophile purple bacteria Thermochromatium tepidum consists of an array of α- and β-polypeptides which assemble the photoactive bacteriochlorophyll and closely interact with the membrane-lipids. In this study, we investigated the effect of calcium and manganese ions on the protein structure and thermostability of the reaction centre (RC)-LH1/lipid complex. The binding of Ca(2+), but not Mn(2+) is shown to shift the LH1 Q ( y ) absorption maximum from ~889 to 915 nm and to significantly raise the thermostability of the RC-LH1 complex.

View Article and Find Full Text PDF