Cannabinoid CB receptor (CBR) is a class A G protein-coupled receptor (GPCR) involved in a broad spectrum of physiological processes and pathological conditions. For that reason, targeting CBR might provide therapeutic opportunities in neurodegenerative disorders, neuropathic pain, inflammatory diseases, and cancer. The main components from Cannabis sativa, such as Δ-tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD), have been therapeutically exploited and synthetically-derived analogs have been generated.
View Article and Find Full Text PDFEvaluation of kinetic parameters of drug-target binding, k, k, and residence time (RT), in addition to the traditional in vitro parameter of affinity is receiving increasing attention in the early stages of drug discovery. Target binding kinetics emerges as a meaningful concept for the evaluation of a ligand's duration of action and more generally drug efficacy and safety. We report the biological evaluation of a novel series of spirobenzo-oxazinepiperidinone derivatives as inhibitors of the human equilibrative nucleoside transporter 1 (hENT1, SLC29A1).
View Article and Find Full Text PDFCannabinoid receptor 1 (CBR) and cannabinoid receptor 2 (CBR) are G protein-coupled receptors (GPCRs) that activate a variety of pathways upon activation by (partial) agonists including the G protein pathway and the recruitment of β-arrestins. Differences in the activation level of these pathways lead to biased signaling. Here, we describe a detailed protocol to characterize the potency and efficacy of ligands to induce or inhibit β-arrestin recruitment to the human CBR and CBR using the PathHunter assay.
View Article and Find Full Text PDF