A series of novel benzophenone derivatives containing a thiazole heterocyclic nucleus were designed by molecular hybridization. Molecular docking studies have demonstrated the inhibitory potential of the designed compounds against cyclooxygenase (COX) isoenzymes. These compounds were synthesized, characterized, and evaluated for their anti-inflammatory properties by the croton oil-induced ear edema assay to examine their effect on both prostaglandin (PG) production and neutrophils recruitment.
View Article and Find Full Text PDFThe natural biflavonoids morelloflavone-4‴-O-β-D-glycosyl (1), (±)-fukugiside (2) and morelloflavone (3) were isolated from the ethyl acetate extract (EAEE) of dried and powdered fruit epicarps of Garcinia brasiliensis and derivatives of morelloflavone were semi-synthesised. Morelloflavone-7,4',7″,3‴,4‴-penta-O-acetyl (4), morelloflavone-7,4',7″,3‴,4‴-penta-O-methyl (5) and morelloflavone-7,4',7″,3‴,4‴-penta-O-butanoyl (6) were prepared by acylation and alkylation reactions. All compounds showed leishmanicidal, antiproteolytic and antioxidant activities in addition to exhibiting low cytotoxicity.
View Article and Find Full Text PDFSix derivatives of guttiferone-A (LFQM-79, 80, 81, 82, 113 and 114) were synthesized and evaluated for their antimicrobial activity against the opportunistic or pathogenic fungi Candida albicans (ATCC 09548), Candida glabrata (ATCC 90030), Candida krusei (ATCC 6258), Candida parapsilosis (ATCC 69548), Candida tropicalis (ATCC 750), Cryptococcus neoformans (ATCC 90012), Trichophyton tonsurans, Microsporum gypseum and also against the opportunistic and pathogenic Gram-positive bacteria Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 12228), Bacillus cereus (ATCC 11778) and Gram-negative Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 9027), Salmonella typhimurium (ATCC 14028), Proteus mirabilis (ATCC 25933). The antimicrobial activities of derivatives were compared with guttiferone-A and they presented to be more potent than the original molecule and sometimes greater than standard drugs established in therapeutics. The current study showed that derivatives of guttiferone-A possess potent antimicrobial activity and are relatively non-cytotoxic, which reveal these new molecules as promising new drug prototype candidates, with innovative structural pattern.
View Article and Find Full Text PDF