Publications by authors named "Jaqueline Munhoz"

Background: Docosahexaenoic acid (DHA) and arachidonic acid (AA) on oral tolerance (OT) development in allergy-prone infants is less known.

Objectives: We aim to determine the effects of early life DHA supplementation (1% of total fat, from novel canola oil), along with AA, on OT toward ovalbumin (ova, egg protein) in allergy-prone BALB/c pups at 6-wk.

Methods: Breastfeeding dams (n ≥ 10/diet) were fed DHA+AA (1% DHA, 1% AA wt/wt of total fat) or control (0% DHA, 0% AA) suckling period diet (SPD) during which pups consumed dam's milk.

View Article and Find Full Text PDF

The immune system requires an adequate supply of nutrients, although current dietary recommendations may not account for optimal immune function in healthy adults. Nutrient inadequacies due to the growing influence of the western diet pose a risk for immune dysfunction. This review aims to determine the beneficial effects of supplementing dietary fats, nutrients that modulate gut microbiota, and specific micronutrients on systemic immune functions (concentrations of plasma cytokines, antibodies, and acute phase proteins) during health and acute inflammatory conditions, including COVID-19.

View Article and Find Full Text PDF

Purpose: To study the effects of feeding docosahexaenoic acid (DHA, derived from novel canola oil), with same amount of arachidonic acid (ARA), supplemented diet to lactating dams on the immune system development of suckled offspring using a T helper type-2 (Th2)-dominant BALB/c mouse.

Methods: Dams received nutritionally complete control (no ARA or DHA) or DHA + ARA diet (1% DHA and 1% ARA of total fatty acids) from 5 days pre-parturition to the end of 3-week suckling period. After euthanization, relevant tissues were collected to study fatty acids, splenocyte phenotype and function (ex vivo cytokines with/without lipopolysaccharide (LPS, bacterial challenge) or phorbol myristate acetate + ionomycin (PMAi) stimulation).

View Article and Find Full Text PDF

Dendritic cells (DCs) vaccine is a potential tool for oncoimmunotherapy. However, it is known that this therapeutic strategy has failed in solid tumors, making the development of immunoadjuvants highly relevant. Recently, we demonstrated that spider venom (PnV) components are cytotoxic to glioblastoma (GB) and activate macrophages for an antitumor profile.

View Article and Find Full Text PDF

Glioblastomas (GBs) are responsible for a higher mortality rate among gliomas, corresponding to more than 50% of them and representing a challenge in terms of therapy and prognosis. Peptide-based antineoplastic therapy is a vast and promising field, and these molecules are one of the main classes present in spider venoms. Recently, our research group demonstrated the cytotoxic effects of spider venom (PnV) in GBs.

View Article and Find Full Text PDF

Peptides are molecules that have emerged as crucial candidates for the development of anticancer drugs. Spider venoms are a rich source of peptides (venom peptides - VPs) with biological effects. VPs have been tested as adjuvants in the activation of cells of the immune system with the aim of improving immunotherapies for the treatment of neoplasms.

View Article and Find Full Text PDF

Immunomodulation has been considered an important approach in the treatment of malignant tumours. However, the modulation of innate immune cells remains an underexplored tool. Studies from our group demonstrated that the Phoneutria nigriventer spider venom (PnV) administration increased the infiltration of macrophage in glioblastoma, in addition to decreasing the tumour size in a preclinical model.

View Article and Find Full Text PDF

Background: Glioblastoma (GB) cells have the ability to migrate and infiltrate the normal parenchyma, leading to the formation of recurrent tumors often adjacent to the surgical extraction site. We recently showed that Phoneutria nigriventer spider venom (PnV) has anticancer effects mainly on the migration of human GB cell lines (NG97 and U-251). The present work aimed to investigate the effects of isolated components from the venom on migration, invasiveness, morphology and adhesion of GB cells, also evaluating RhoA-ROCK signaling and Na/K-ATPase β2 (AMOG) involvement.

View Article and Find Full Text PDF

Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) are neuroinflammatory diseases of the central nervous system (CNS), where leukocytes and CNS resident cells play important roles in disease development and pathogenesis. The antimalarial drug chloroquine (CQ) has been shown to suppress EAE by modulating dendritic cells (DCs) and Th17 cells. However, the mechanism of action by which CQ modulates EAE is far from being elucidated.

View Article and Find Full Text PDF

Molecules from animal venoms are promising candidates for the development of new drugs. Previous in vitro studies have shown that the venom of the spider Phoneutria nigriventer (PnV) is a potential source of antineoplastic components with activity in glioblastoma (GB) cell lines. In the present work, the effects of PnV on tumor development were established in vivo using a xenogeneic model.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionub9ferj6s94qqau5106uu0cn3pu4lc1i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once