Objectives: Staphylococcus epidermidis biofilms form at the surface of implants and prostheses and are responsible for the failure of many antibiotic therapies. Only a few antibiotics are relatively active against biofilms, and rifampicin, a transcription inhibitor, is among the most effective molecules for treating biofilm-related infections. Having recently selected a new potential transcription inhibitor, we attempted to evaluate its efficacy against S.
View Article and Find Full Text PDFObjectives: Despite extensive functional screening of the bacterial RNA polymerase (RNAP) over the past years, very few novel inhibitors have been reported. We have, therefore, decided to screen with a radically different, non-enzymic, protein-protein interaction assay. Our target is the highly conserved RNAP-sigma interaction that is essential for transcription.
View Article and Find Full Text PDFWe have recently isolated a monoclonal antibody directed against Escherichia coli RNA polymerase that does not inhibit transcription. This antibody is a useful tool to immobilize this enzyme for transcription assays or protein-protein interaction studies. The epitope of this monoclonal antibody was precisely located by a combination of protein deletion and synthetic peptide scanning.
View Article and Find Full Text PDFWe have developed a multiwell assay for the detection of modulators of prokaryotic transcription based on the quantification of protein-protein interaction. This assay consists of three steps: (a) the immobilization of the Escherichia coli protein sigma70 in the well, (b) the incubation of the immobilized protein with core RNA polymerase and a potential inhibitor, and (c) washing and quantification of the binding of core to sigma70 with a monoclonal antibody conjugated to horseradish peroxidase. We show that this assay is sensitive, reproducible, and robust, and is able to discriminate between control competitors with different affinities.
View Article and Find Full Text PDF