Publications by authors named "Jaqueline Auer"

Soy (Glycine max) is used in a wide range of products and plays a major role in replacing animal-based products. Since the cultivation of soy is limited by cold climates, this review assessed the nutritional, sensory, and functional properties of three alternative cold-tolerant crops (faba bean (), yellow pea (), and oat ()). Lower protein quality compared with soy and the presence of anti-nutrients are nutritional problems with all three crops, but different methods to adjust for these problems are available.

View Article and Find Full Text PDF

Scaffold-mediated tissue engineering has become a golden solution for the regeneration of damaged bone tissues that lack self-regeneration capability. A successful scaffold in bone tissue engineering comprises a multitude of suitable biological, microarchitectural, and mechanical properties acting as different signaling cues for the cells to mediate the new tissue formation. Therefore, careful design of bioactive scaffold macro- and microstructures in multiple length scales and biophysical properties fulfilling the tissue repair demands are necessary yet challenging to achieve.

View Article and Find Full Text PDF

The hierarchical nacre-like three-dimensional (3D) assembly of porous and lightweight materials is in high demand for applications such as sensors, flexible energy storage and harvesting devices, electromagnetic interference shielding, and biomedical applications. However, designing such a biomimetic hierarchical architecture is highly challenging due to the lack of experimental approaches to achieve the necessary control over the materials' microstructure on the multilength scale. Aerogels and foam-based materials have recently been developed as attractive candidates for pressure-sensing applications.

View Article and Find Full Text PDF

Due to the current energy crises, the search for thermal energy management systems based on thermal insulating porous materials has drawn a significant deal of attention. Herein, we demonstrated the thermal insulation and management capabilities of cuttlefish bone mimetic aerogels with hierarchically organized porous structures directly fabricated from surface-modified and self-assembled silk fibroin (SF) biopolymer extracted from silkworm cocoon biomass; hereafter, the materials developed referred to as X-. Exploiting from creating an interpenetrating network of the secondary ceramic components of various one-, two-, and three-dimensional sepiolite (MgHSiO·HO), MXene (TiCT), and silica nanostructures inside the self-assembled SF biopolymer and subsequent uni-directional freeze-casting and drying the resulted hydrogels, composites with aerogel features were obtained.

View Article and Find Full Text PDF