Publications by authors named "Japaridze A"

Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior in the motility of E.

View Article and Find Full Text PDF

Bacterial chromosomes are folded into tightly regulated three-dimensional structures to ensure proper transcription, replication, and segregation of the genetic information. Direct visualization of chromosomal shape within bacterial cells is hampered by cell-wall confinement and the optical diffraction limit. Here, we combine cell-shape manipulation strategies, high-resolution fluorescence microscopy techniques, and genetic engineering to visualize the shape of unconfined bacterial chromosome in real-time in live Bacillus subtilis cells that are expanded in volume.

View Article and Find Full Text PDF

Bacteria that are resistant to antibiotics present an increasing burden on healthcare. To address this emerging crisis, novel rapid antibiotic susceptibility testing (AST) methods are eagerly needed. Here, we present an optical AST technique that can determine the bacterial viability within 1 h down to a resolution of single bacteria.

View Article and Find Full Text PDF

The bacterial chromosome is spatially organized through protein-mediated compaction, supercoiling, and cell-boundary confinement. Structural Maintenance of Chromosomes (SMC) complexes are a major class of chromosome-organizing proteins present throughout all domains of life. Here, we study the role of the SMC complex MukBEF in chromosome architecture and segregation.

View Article and Find Full Text PDF

Chromosome structure and function is studied using various cell-based methods as well as with a range of single-molecule techniques on short DNA substrates. Here, we present a method to obtain megabase-pair-length deproteinated DNA for studies. We isolated chromosomes from bacterial cells and enzymatically digested the native proteins.

View Article and Find Full Text PDF

Motion is a key characteristic of every form of life. Even at the microscale, it has been reported that colonies of bacteria can generate nanomotion on mechanical cantilevers, but the origin of these nanoscale vibrations has remained unresolved. Here, we present a new technique using drums made of ultrathin bilayer graphene, where the nanomotion of single bacteria can be measured in its aqueous growth environment.

View Article and Find Full Text PDF

Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins.

View Article and Find Full Text PDF

The process of DNA segregation, the redistribution of newly replicated genomic material to daughter cells, is a crucial step in the life cycle of all living systems. Here, we review DNA segregation in bacteria which evolved a variety of mechanisms for partitioning newly replicated DNA. Bacterial species such as and contain pushing and pulling mechanisms that exert forces and directionality to mediate the moving of newly synthesized chromosomes to the bacterial poles.

View Article and Find Full Text PDF

Nucleoid-associated proteins (NAPs) are a class of highly abundant DNA-binding proteins in bacteria and archaea. While both the composition and relative abundance of the NAPs change during the bacterial growth cycle, surprisingly little is known about their crosstalk in mutually binding and stabilizing higher-order nucleoprotein complexes in the bacterial chromosome. Here, we use atomic force microscopy and solid-state nanopores to investigate long-range nucleoprotein structures formed by the binding of two major NAPs, FIS and H-NS, to DNA molecules with distinct binding site arrangements.

View Article and Find Full Text PDF

The replication and transfer of genomic material from a cell to its progeny are vital processes in all living systems. Here we visualize the process of chromosome replication in widened E. coli cells.

View Article and Find Full Text PDF

The fine interplay between the simultaneous stretching and confinement of amyloid fibrils is probed by combining a microcapillary setup with atomic force microscopy. Single-molecule statistics reveal how the stretching of fibrils changed from force to confinement dominated at different length scales. System order, however, is solely ruled by confinement.

View Article and Find Full Text PDF

In bacteria, nucleoid associated proteins (NAPs) take part in active chromosome organization by supercoil management, three-dimensional DNA looping and direct transcriptional control. Mycobacterial integration host factor (mIHF, rv1388) is a NAP restricted to Actinobacteria and essential for survival of the human pathogen Mycobacterium tuberculosis. We show in vitro that DNA binding by mIHF strongly stabilizes the protein and increases its melting temperature.

View Article and Find Full Text PDF

Although the physical properties of chromosomes, including their morphology, mechanics, and dynamics are crucial for their biological function, many basic questions remain unresolved. Here we directly image the circular chromosome in live E. coli with a broadened cell shape.

View Article and Find Full Text PDF

Structural differentiation of bacterial chromatin depends on cooperative binding of abundant nucleoid-associated proteins at numerous genomic DNA sites and stabilization of distinct long-range nucleoprotein structures. Histone-like nucleoid-structuring protein (H-NS) is an abundant DNA-bridging, nucleoid-associated protein that binds to an AT-rich conserved DNA sequence motif and regulates both the shape and the genetic expression of the bacterial chromosome. Although there is ample evidence that the mode of H-NS binding depends on environmental conditions, the role of the spatial organization of H-NS-binding sequences in the assembly of long-range nucleoprotein structures remains unknown.

View Article and Find Full Text PDF

In living cells, DNA is highly confined in space with the help of condensing agents, DNA binding proteins and high levels of supercoiling. Due to challenges associated with experimentally studying DNA under confinement, little is known about the impact of spatial confinement on the local structure of the DNA. Here, we have used well characterized slits of different sizes to collect high resolution atomic force microscopy images of confined circular DNA with the aim of assessing the impact of the spatial confinement on global and local conformational properties of DNA.

View Article and Find Full Text PDF

Bacterial chromosome has a compact structure that dynamically changes its shape in response to bacterial growth rate and growth phase. Determining how chromatin remains accessible to DNA binding proteins, and transcription machinery is crucial to understand the link between genetic regulation, DNA structure, and topology. Here, we study very large supercoiled dsDNA using high-resolution characterization, theoretical modeling, and molecular dynamics calculations.

View Article and Find Full Text PDF

Due to its well-defined topology and chemical structure, DNA could become a biological standard sample in the field of nanospectroscopy. Tip-enhanced Raman spectroscopy (TERS) provides new insights into individual DNA molecules immobilized on flat mica crystals. The high sensitivity of TERS is used to assess the chemical changes that appear in DNA upon different surface immobilization protocols.

View Article and Find Full Text PDF

Mycobacterium tuberculosis secretes multiple virulence factors during infection via the general Sec and Tat pathways, and via specialized ESX secretion systems, also referred to as type VII secretion systems. The ESX-1 secretion system is an important virulence determinant because deletion of ESX-1 leads to attenuation of M. tuberculosis.

View Article and Find Full Text PDF

DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria.

View Article and Find Full Text PDF

The bacterial gene regulatory regions often demonstrate distinctly organized arrays of RNA polymerase binding sites of ill-defined function. Previously we observed a module of closely spaced polymerase binding sites upstream of the canonical promoter of the Escherichia coli fis operon. FIS is an abundant nucleoid-associated protein involved in adjusting the chromosomal DNA topology to changing cellular physiology.

View Article and Find Full Text PDF

The nucleoid-associated protein EspR, a chromosome organizer, has pleiotropic effects on expression of genes associated with cell wall function and pathogenesis in Mycobacterium tuberculosis. In particular, EspR binds to several sites upstream of the espACD locus to promote its expression, thereby ensuring full function of the ESX-1 secretion system, a major virulence determinant. The N terminus of EspR contains the helix-turn-helix DNA-binding domain, whereas the C-terminal dimerization domain harbors residues involved in intersubunit interactions.

View Article and Find Full Text PDF

Nanoaggregates composed of selected glycoforms from Escherichia coli 055:B5 lipopolysaccharide (LPS) were prepared by combining sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, zinc-imidazole reverse staining, zinc chelation after cutting gel slices, elution with either 0.5% triethylamine (TEA) or 0.4% to 0.

View Article and Find Full Text PDF

Humanitarian emergencies, including natural and human-made disasters, conflicts and complex emergencies, constitute what has traditionally been considered the main threat to health security worldwide. Each year millions of people are affected by natural and man-made disasters around the world. Tornados, hurricanes, heavy rains and earthquakes resulted in tens of thousands of deaths and many more affected.

View Article and Find Full Text PDF