Aim: To develop and validate models based on logistic regression and artificial intelligence for prognostic prediction of molar survival in periodontally affected patients.
Materials And Methods: Clinical and radiographic data from four different centres across four continents (two in Europe, one in the United States, and one in China) including 515 patients and 3157 molars were collected and used to train and test different types of machine-learning algorithms for their prognostic ability of molar loss over 10 years. The following models were trained: logistic regression, support vector machine, K-nearest neighbours, decision tree, random forest, artificial neural network, gradient boosting, and naive Bayes.