Background: The regulation of gene expression by transcription factors is a key determinant of cellular phenotypes. Deciphering genome-wide networks that capture which transcription factors regulate which genes is one of the major efforts towards understanding and accurate modeling of living systems. However, reverse-engineering the network from gene expression profiles remains a challenge, because the data are noisy, high dimensional and sparse, and the regulation is often obscured by indirect connections.
View Article and Find Full Text PDFThe NCI-60 cell line set is likely the most molecularly profiled set of human tumor cell lines in the world. However, a critical missing component of previous analyses has been the inability to place the massive amounts of "-omic" data in the context of functional protein signaling networks, which often contain many of the drug targets for new targeted therapeutics. We used reverse-phase protein array (RPPA) analysis to measure the activation/phosphorylation state of 135 proteins, with a total analysis of nearly 200 key protein isoforms involved in cell proliferation, survival, migration, adhesion, etc.
View Article and Find Full Text PDF