Publications by authors named "Janusz Pyka"

Divalent copper and iron cations have been acknowledged for their catalytic roles in physiological processes critical for homeostasis maintenance. Being redox-active, these metals act as cofactors in the enzymatic reactions of electron transfer. However, under pathophysiological conditions, owing to their high redox potentials, they may exacerbate stress-induced injury.

View Article and Find Full Text PDF

The role of nitric oxide in human tumor biology and therapy has been the subject of extensive studies. However, there is only limited knowledge about the mechanisms of NO production and its metabolism, and about the role NO can play in modern therapeutic procedures, such as photodynamic therapy. Here, for the first time, we report the presence of nitrosylhemoglobin, a stable complex of NO, in human lung adenocarcinoma A549 tumors growing in situ in nude mice.

View Article and Find Full Text PDF

Lung adenocarcinoma is a leading human malignancy with fatal prognosis. Ninety percent of the deaths, however, are caused by metastases. The model of subcutaneous tumor xenograft in nude mice was adopted to study the growth of control and photodynamically treated tumors derived from the human A549 lung adenocarcinoma cell line.

View Article and Find Full Text PDF

Liver disturbances stimulate inflammatory reaction in the brain but little is known if injury to the brain can significantly influence liver metabolism. This problem is crucial in modern transplantology, as the condition of the donor brain seems to strongly affect the quality (viability) of the graft, which is often obtained from brain-dead donors, usually after traumatic brain injury. Because nitric oxide is one of the significant molecules in brain and liver biology, we examined if brain injury can affect NO level in the liver.

View Article and Find Full Text PDF

Nitric oxide is an important mediator of inflammation in the brain, but it still remains unresolved whether its action is protective or not. In particular, it seems crucial to compare the effects observed in the mature brain with the developing brain of newborn animals. The influence of NO on tissue depends significantly on its concentration.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) induces inflammatory reactions, and one of the essential mediators of this reaction is nitric oxide (NO). The action of this compound is still under study because no clear consensus has been reached about its exact action in the central nervous system. Further, it is unknown if, in the damaged brain, its neuroprotective activity outweighs its putative neurodegenerative properties.

View Article and Find Full Text PDF

A series of multi-nanosecond molecular dynamics (MD) simulations of wild-type cytochrome c and its spin-labeled variants with the methanethiosulfonate moiety attached at position C102 were performed (1) to elucidate the effect of the spin probe presence on the protein structure and (2) to describe the structure and dynamics of the spin-label moiety. Comparisons with the reference crystal structure of cytochrome c (PDB entry: 1YCC) indicate that the protein secondary structure is well preserved during simulations of the wild-type cytochrome c but slightly changed in simulations of the cytochrome c labeled at position C102. At the time scale covered in our simulations, the spin label exhibits highly dynamical behavior.

View Article and Find Full Text PDF

Long pulse saturation recovery electron paramagnetic resonance spectroscopy is applied to the investigation of spin-labeled side chains placed along a regular helix extending from 128 to 135 in T4 lysozyme. Under an argon atmosphere, analysis of the exponential saturation recovery curves gives the spin-lattice relaxation rates of the nitroxides, which depend on the nitroxide side-chain dynamics. In the presence of the fast-relaxing paramagnetic reagents O(2) or NiEDDA, global analysis of the saturation recovery provides the spin-lattice relaxation rates as well as the Heisenberg exchange rates of the nitroxide with the reagents.

View Article and Find Full Text PDF