We present a new theory for partitioning simulations of periodic and solid-state systems into physically sound atomic contributions at the level of Kohn-Sham density functional theory. Our theory is based on spatially localized linear combinations of crystalline Gaussian-type orbitals and, as such, capable of exposing local features within periodic electronic structures in a more intuitive and robust manner than alternatives based on the spatial distribution of atomic basis functions alone. Early decomposed cohesive energies of both molecular polymers and different crystalline polymorphs demonstrate how the atomic properties yielded by our theory convincingly align with the expected charge polarization in these systems, also whenever partial charges and Madelung energies may lend themselves somewhat ambiguous to interpretation.
View Article and Find Full Text PDFLocal electronic-structure methods in quantum chemistry operate on the ability to compress electron correlations more efficiently in a basis of spatially localized molecular orbitals than in a parent set of canonical orbitals. However, many typical choices of localized orbitals tend to be related by selected, near-exact symmetry operations whenever a molecule belongs to a point group, a feature which remains largely unexploited in most local correlation methods. The present Letter demonstrates how to leverage a recent unitary protocol for enforcing symmetry properties among localized orbitals to yield a high-accuracy estimate of the exact ground-state correlation energy of benzene () in correlation-consistent polarized basis sets of both double- and triple-ζ quality.
View Article and Find Full Text PDFWe present a wide-reaching revamp of the generalized many-body expanded full configuration interaction (MBE-FCI) method. First, we outline how to automatize the selection of reference active spaces, whereby the inherent bias introduced through a manual identification is reduced, also within the context of traditional complete active space methods. Second, we allow for the use of compact orbital clusters as expansion objects, which works to circumvent the unfavorable scaling with the number of orbitals included in the space complementary to the reference orbitals.
View Article and Find Full Text PDFWe present a novel implementation of the complete active space self-consistent field (CASSCF) method that makes use of the many-body expanded full configuration interaction (MBE-FCI) method to incrementally approximate electronic structures within large active spaces. On the basis of a hybrid first-order algorithm employing both Super-CI and quasi-Newton strategies for the optimization of molecular orbitals, we demonstrate both computational efficacy and high accuracy of the resulting MBE-CASSCF method. We assess the performance of our implementation on a set of established numerical tests before applying MBE-CASSCF in the investigation of the triplet-quintet spin gap of iron(II) porphyrin with active spaces as large as 50 electrons in 50 orbitals.
View Article and Find Full Text PDFThe simulation of intrinsic contributions to molecular properties holds the potential to allow for chemistry to be directly inferred from changes to electronic structures at the atomic level. In the present study, we demonstrate how such local properties can be readily derived from suitable molecular orbitals to yield effective fingerprints of various types of atoms in organic molecules. In contrast, corresponding inferences from schemes that instead make use of individual atomic orbitals for this purpose are generally found to fail in expressing much uniqueness in atomic environments.
View Article and Find Full Text PDFWe present a novel algorithm for (i) detecting approximate symmetries inherently present among spatially localized molecular orbitals and (ii) enforcing these in numerically exact manners by means of unitary optimization techniques. The vast potential of our algorithm to compress a full set of molecular orbitals into only a minimal set of symmetry-unique orbitals is demonstrated, starting from localized bases of either Pipek-Mezey or Foster-Boys orbitals. Comparisons of results based on either of these two localization procedures indicate that Foster-Boys molecular orbitals can be spanned by a smaller number of symmetry-unique orbitals on average, making these outstanding candidates for the exploitation of general, (non-)Abelian point-group symmetries in a range of local correlation methods.
View Article and Find Full Text PDFJ Chem Theory Comput
April 2023
We apply a number of atomic decomposition schemes across the standard QM7 data set─a small model set of organic molecules at equilibrium geometry─to inspect the possible emergence of trends among contributions to atomization energies from distinct elements embedded within molecules. Specifically, a recent decomposition scheme of ours based on spatially localized molecular orbitals is compared to alternatives that instead partition molecular energies on account of which nuclei individual atomic orbitals are centered on. We find these partitioning schemes to expose the composition of chemical compound space in very dissimilar ways in terms of the grouping, binning, and heterogeneity of discrete atomic contributions, e.
View Article and Find Full Text PDFJ Chem Phys
February 2022
The potential of mean-field decomposition techniques in interpreting electronic transitions in molecules is explored, in particular, the usefulness of these for offering computational signatures of different classes of such excitations. When viewed as a conceptual lens for this purpose, decomposed results are presented for ground- and excited-state energies and dipole moments of selected prototypical organic dyes, and the discrete nature of these properties as well as how they change upon transitioning from one state to another is analyzed without recourse to a discussion based on the involved molecular orbitals. On the basis of results obtained both with and without an account of continuum solvation, our work is further intended to shed new light on practical and pathological differences in between various functional approximations in orbital-optimized Kohn-Sham density functional theory for excited states, equipping practitioners and developers in the field with new probes and possible validation tools.
View Article and Find Full Text PDFJ Phys Chem Lett
July 2021
The present work demonstrates a robust protocol for probing localized electronic structure in condensed-phase systems, operating in terms of a recently proposed theory for decomposing the results of Kohn-Sham density functional theory in a basis of spatially localized molecular orbitals. In an initial application to liquid, ambient water and the assessment of the solvation energy and the embedded dipole moment of HO in solution, we find that both properties are amplified on average-in accordance with expectation-and that correlations are indeed observed to exist between them. However, the simulated solvent-induced shift to the dipole moment of water is found to be significantly dampened with respect to typical literature values.
View Article and Find Full Text PDFWe present a Perspective on what the future holds for full configuration interaction (FCI) theory, with an emphasis on conceptual rather than technical details. Upon revisiting the early history of FCI, a number of its key contemporary approximations are compared on as equal a footing as possible, using a recent blind challenge on the benzene molecule as a testbed [Eriksen , , 2020 11, 8922]. In the process, we review the scope of applications for which FCI continues to prove indispensable, and the required traits in terms of robustness, efficacy, and reliability its modern approximations must satisfy are discussed.
View Article and Find Full Text PDFWe introduce new and robust decompositions of mean-field Hartree-Fock and Kohn-Sham density functional theory relying on the use of localized molecular orbitals and physically sound charge population protocols. The new lossless property decompositions, which allow for partitioning one-electron reduced density matrices into either bond-wise or atomic contributions, are compared to alternatives from the literature with regard to both molecular energies and dipole moments. Besides commenting on possible applications as an interpretative tool in the rationalization of certain electronic phenomena, we demonstrate how decomposed mean-field theory makes it possible to expose and amplify compositional features in the context of machine-learned quantum chemistry.
View Article and Find Full Text PDFThe recently proposed many-body expanded full configuration interaction (MBE-FCI) method is extended to excited states and static first-order properties different from total, ground state correlation energies. Results are presented for excitation energies and (transition) dipole moments of two prototypical, heteronuclear diatomics-LiH and MgO-in augmented correlation consistent basis sets of up to quadruple-ζ quality. Given that MBE-FCI properties are evaluated without recourse to a sampled wave function and the storage of corresponding reduced density matrices, the memory overhead associated with the calculation of general first-order properties only scales with the dimension of the desired property.
View Article and Find Full Text PDFWe report on the findings of a blind challenge devoted to determining the frozen-core, full configuration interaction (FCI) ground-state energy of the benzene molecule in a standard correlation-consistent basis set of double-ζ quality. As a broad international endeavor, our suite of wave function-based correlation methods collectively represents a diverse view of the high-accuracy repertoire offered by modern electronic structure theory. In our assessment, the evaluated high-level methods are all found to qualitatively agree on a final correlation energy, with most methods yielding an estimate of the FCI value around -863 m.
View Article and Find Full Text PDFPySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2019
Facilitated by a rigorous partitioning of a molecular system's orbital basis into two fundamental subspaces-a reference and an expansion space, both with orbitals of unspecified occupancy-we generalize our recently introduced many-body expanded full configuration interaction (MBE-FCI) method to allow for electron-rich model and molecular systems dominated by both weak and strong correlation to be addressed. By employing minimal or even empty reference spaces, we show through calculations on the one-dimensional Hubbard model with up to 46 lattice sites, the chromium dimer, and the benzene molecule how near-exact results may be obtained in an entirely unbiased manner for chemical and physical problems of not only academic but also applied chemical interest. Given the massive parallelism and overall accuracy of the resulting method, we argue that generalized MBE-FCI theory possesses an immense potential to yield near-exact correlation energies for molecular systems of unprecedented size, composition, and complexity in the years to come.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2019
In this second part of our series on the recently proposed many-body expanded full configuration interaction (MBE-FCI) method, we introduce the concept of multideterminantal expansion references. Through theoretical arguments and numerical validations, the use of this class of starting points is shown to result in a focused compression of the MBE decomposition of the FCI energy, thus allowing chemical problems dominated by strong correlation to be addressed by the method. The general applicability and performance enhancements of MBE-FCI are verified for standard stress tests such as the bond dissociations in HO, N, C, and a linear H chain.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2018
Over the course of the past few decades, the field of computational chemistry has managed to manifest itself as a key complement to more traditional lab-oriented chemistry. This is particularly true in the wake of the recent renaissance of full configuration interaction (FCI)-level methodologies, albeit only if these can prove themselves sufficiently robust and versatile to be routinely applied to a variety of chemical problems of interest. In the present series of works, performance and feature enhancements of one such avenue toward FCI-level results for medium to large one-electron basis sets, the recently introduced many-body expanded full configuration interaction (MBE-FCI) formalism [ J.
View Article and Find Full Text PDFIt is demonstrated how full configuration interaction (FCI) results in extended basis sets may be obtained to within sub-kJ/mol accuracy by decomposing the energy in terms of many-body expansions in the virtual orbitals of the molecular system at hand. This extension of the FCI application range lends itself to two unique features of the current approach, namely, that the total energy calculation can be performed entirely within considerably reduced orbital subspaces and may be so by means of embarrassingly parallel programming. Facilitated by a rigorous and methodical screening protocol and further aided by expansion points different from the Hartree-Fock solution, all-electron numerical results are reported for HO in polarized core-valence basis sets ranging from double-ζ (10 e, 28 o) to quadruple-ζ (10 e, 144 o) quality.
View Article and Find Full Text PDFThe convergence of a recently proposed coupled cluster (CC) family of perturbation series [J. J. Eriksen et al.
View Article and Find Full Text PDFWe extend our assessment of the potential of perturbative coupled cluster (CC) expansions for a test set of open-shell atoms and organic radicals to the description of quadruple excitations. Namely, the second- through sixth-order models of the recently proposed CCSDT(Q-n) quadruples series [J. J.
View Article and Find Full Text PDFThe accuracy at which total energies of open-shell atoms and organic radicals may be calculated is assessed for selected coupled cluster perturbative triples expansions, all of which augment the coupled cluster singles and doubles (CCSD) energy by a non-iterative correction for the effect of triple excitations. Namely, the second- through sixth-order models of the recently proposed CCSD(T-n) triples series [J. J.
View Article and Find Full Text PDFWe consider two distinct coupled cluster (CC) perturbation series that both expand the difference between the energies of the CCSD (CC with single and double excitations) and CCSDT (CC with single, double, and triple excitations) models in orders of the Møller-Plesset fluctuation potential. We initially introduce the E-CCSD(T-n) series, in which the CCSD amplitude equations are satisfied at the expansion point, and compare it to the recently developed CCSD(T-n) series [J. J.
View Article and Find Full Text PDF