Publications by authors named "Jantira Sanit"

Ferric-tannic nanoparticles (FTs) are now considered to be new pharmaceuticals appropriate for the prevention of brain aging and related diseases. We have previously shown that FTs could activate axon guidance pathways and cellular clearance functioning in neuronal cell lines. Herein, we further investigated whether FTs could activate the two coordinated neuronal functions of axon guidance and synaptic function in rat brains and neuronal cell lines.

View Article and Find Full Text PDF

Herein, we present molecular nanoparticles of ferric-tannic complexes (so called ferric-tannic nanoparticles, FT NPs) used to enhance the MRI signal in the early stage of hepatocarcinoma. FT NPs were found to accumulate in the hepatic parenchyma without tumor nodules of Wistar rats in which hepatocarcinogenicity had been induced using diethylnitrosamine (DEN). The MRI enhancement and accumulation of FT NPs were clearly observed in the early phase of hepatocarcinogenicity, which was possibly modulated by various solute carrier family members present in the entire hepatic parenchyma of the DEN-induced rats.

View Article and Find Full Text PDF

Microvascular and macrovascular diseases are the main causes of morbidity in type 2 diabetes patients through chronic hyperglycaemic condition via oxidative stress and inflammation. Reactive oxygen species (ROS) activate p38 MAPK phosphorylation and inflammation which enhances protein modification by carbonylation. The use of metformin and a p38 MAPK inhibitor is hypothesised to reduce ROS production and inflammation but effects of metformin and p38 MAPK inhibitor (SB203580) on ROS production and inflammation in vascular type 2 diabetes mellitus non-obese (T2DM) have not been investigated.

View Article and Find Full Text PDF

Diabetic cardiomyopathy, especially myocardial ischemia reperfusion (I/R) injury, is a major cause of morbidity and mortality in type 2 diabetic patients. The increasing of basal p38 MAP Kinase (p38 MAPK) activation is a major factor that aggravates cardiac death on diabetic cardiomyopathy. In addition, metformin also shows cardio-protective effects on myocardial ischemia/reperfusion injury.

View Article and Find Full Text PDF

Protease enzymes generated from injured cells and leukocytes are the primary cause of myocardial cell damage following ischemia/reperfusion (I/R). The inhibition of protease enzyme activity via the administration of particular drugs may reduce injury and potentially save patients' lives. The aim of the current study was to investigate the cardioprotective effects of treatment with recombinant human secretory leukocyte protease inhibitor (rhSLPI) on and models of myocardial I/R injury.

View Article and Find Full Text PDF

One of the major causes of cardiac cell death during myocardial ischemia is the oversecretion of protease enzymes surrounding the ischemic tissue. Therefore, inhibition of the protease activity could be an alternative strategy for preventing the expansion of the injured area. In the present study, we investigated the effects of Secretory Leukocyte Protease Inhibitor (SLPI), by means of overexpression and treatment of recombinant human SLPI (rhSLPI) in an in vitro model.

View Article and Find Full Text PDF

Background: Cilostazol is a type 3 phosphodiesterase inhibitor which has been previously demonstrated to prevent the occurrence of tachyarrhythmia and improve defibrillation efficacy. However, the mechanism for this beneficial effect is still unclear. Since cardiac mitochondria have been shown to play a crucial role in fatal cardiac arrhythmias and that oxidative stress is one of the main contributors to arrhythmia generation, we tested the effects of cilostazol on cardiac mitochondria under severe oxidative stress.

View Article and Find Full Text PDF

Aim: We hypothesized that dipeptidyl peptidase (DPP)-4 inhibitor (vildagliptin) reduces fatal arrhythmias, cardiac dysfunction and infarct size caused by ischaemia-reperfusion (I/R) injury via its attenuation of cardiac mitochondrial dysfunction.

Methods: In total, 26 rats were randomized to receive either 1 mL normal saline solution or 2.0 mg/kg vildagliptin intravenously (n = 13/group) 30 min prior to a 30-min left anterior descending coronary artery occlusion, followed by a 120-min reperfusion.

View Article and Find Full Text PDF

Aims: Although iron overload induces oxidative stress and brain mitochondrial dysfunction, and is associated with neurodegenerative diseases, brain mitochondrial iron uptake has not been investigated. We determined the role of mitochondrial calcium uniporter (MCU) in brain mitochondria as a major route for iron entry. We hypothesized that iron overload causes brain mitochondrial dysfunction, and that the MCU blocker prevents iron entry into mitochondria, thus attenuating mitochondrial dysfunction.

View Article and Find Full Text PDF

Background And Aims: Cardiac mitochondrial Ca(2+) overload plays a critical role in mechanical and electrical dysfunction leading to cardiac cell death and fatal arrhythmia. Because Ca(2+) overload is related to mitochondrial permeability transition, reactive oxygen species (ROS) production and membrane potential (ΔΨm) dissipation, we probed the mechanistic association between Ca(2+) overload, oxidative stress, mitochondrial permeability transition pore (mPTP) and mitochondrial calcium uniporter (MCU) in isolated cardiac mitochondria.

Methods: Various concentrations of Ca(2+) (5-200 μM) were used to induce mitochondrial dysfunction.

View Article and Find Full Text PDF

Aims: Since variety in response to Ca(2+)-induced mitochondrial dysfunction in different neuronal mitochondrial populations is associated with the pathogenesis of several neurological diseases, we investigated the effects of Ca(2+) overload on synaptic (SM) and nonsynaptic mitochondrial (NM) dysfunction and probed the effects of cyclosporin A (CsA), 4'-chlorodiazepam (CDP) and Ru360 on relieving mitochondrial damage.

Main Methods: SM and NM mitochondria were isolated from rats' brains (n=5/group) and treated with various concentrations (5, 10, 100, and 200 μM) of Ca(2+), with and without CsA (mPTP blocker), CDP (PBR/TSPO blocker) and Ru360 (MCU blocker) pretreatments. Mitochondrial function was determined by mitochondrial swelling, ROS production and mitochondrial membrane potential changes (ΔΨm).

View Article and Find Full Text PDF