The topographic complexity of the mouse retina has long been underestimated. However, functional gradients exist, which reflect the non-uniform statistics of the visual environment. Horizontal cells are the first visual interneurons that shape the receptive fields of down-stream neurons.
View Article and Find Full Text PDFHigh-resolution neurosonography (HRNS) has become a major imaging modality in assessment of peripheral nerve trauma in the recent years. However, the vascular changes of traumatic lesions have not been quantitatively assessed in HRNS. Here, we describe the vascular-ratio, a novel HRNS-based quantitative parameter for the assessment of intraneural vascular alterations in patients with nerve lesions.
View Article and Find Full Text PDFThe first synapse of the visual pathway is formed by photoreceptors, horizontal cells and bipolar cells. While ON bipolar cells invaginate into the photoreceptor terminal and form synaptic triads together with invaginating horizontal cell processes, OFF bipolar cells make flat contacts at the base of the terminal. When horizontal cells are ablated during retina development, no invaginating synapses are formed in rod photoreceptors.
View Article and Find Full Text PDFG-protein-coupled receptors are deactivated or desensitized by phosphorylation by respective G-protein-coupled receptor kinases (GRKs). In zebrafish rod and cone photoreceptor cells, four orthologous GRKs are expressed participating in the deactivation of rod and cone opsins. An important feature of GRKs in general is the consensus sites for lipid modification, which would allow the posttranslational attachment of isoprenoids facilitating membrane association and enzymatic performance.
View Article and Find Full Text PDFEndothelial cells (ECs) have gained an increased scientific focus since they were reported to provide guidance for Schwann cells and subsequently following axons after nerve injuries. However, previous protocols for the isolation of nerve-derived ECs from human nerves are ineffective regarding time and yield. Therefore, we established a novel and efficient protocol for the isolation of ECs from human peripheral nerves by means of immunomagnetic CD31-antibody conjugated Dynabeads and assessed the purity of the isolated cells.
View Article and Find Full Text PDFThe zebrafish retina expresses four recoverin genes (rcv1a, rcv1b, rcv2a and rcv2b) and four opsin kinase genes (grk1a, grk1b, grk7a and grk7b) coding for recoverin and G protein-coupled receptor kinase (opsin kinase) paralogs, respectively. Both protein groups are suggested to form regulatory complexes in rod and cone outer segments, but at present, we lack information about co-localization of recoverin and opsin kinases in zebrafish retinae and which protein-protein interacting pairs form. We analyzed the distribution and co-localization of recoverin and opsin kinase expression in the zebrafish retina.
View Article and Find Full Text PDFConnexin36 (Cx36) is the most abundant connexin in central nervous system neurons. It forms gap junction channels that act as electrical synapses. Similar to chemical synapses, Cx36-containing gap junctions undergo activity-dependent plasticity and complex regulation.
View Article and Find Full Text PDFFront Cell Neurosci
September 2019
In the central nervous system, neuronal processing relies on the precisely orchestrated formation of synapses during development. The first synapse of the visual system is a triad synapse, comprising photoreceptors, horizontal cells and bipolar cells. During the second postnatal week, the axon terminal processes of horizontal cells invaginate rod spherules, followed by rod bipolar cell dendrites.
View Article and Find Full Text PDFNeuronal gap junctions formed by connexin36 (Cx36) and chemical synapses share striking similarities in terms of plasticity. Ca/calmodulin-dependent protein kinase II (CaMKII), an enzyme known to induce memory formation at chemical synapses, has recently been described to potentiate electrical coupling in the retina and several other brain areas phosphorylation of Cx36. The contribution of individual CaMKII isoforms to this process, however, remains unknown.
View Article and Find Full Text PDFBackground: Clinical and electrophysiological assessments prevail in evaluation of traumatic nerve lesions and their regeneration following nerve surgery in humans. Recently, high-resolution neurosonography (HRNS) and magnetic resonance neurography have gained significant importance in peripheral nerve imaging. The use of the grey-scale-based "fascicular ratio" (FR) was established using both modalities allowing for quantitative assessment.
View Article and Find Full Text PDFRetinal horizontal cells (HCs) are inhibitory neurons, which modulate the transmission of light-elicited signals from photoreceptors to bipolar cells in the outer retina. HCs of the same physiological type are extensively coupled via gap junctions. In the zebrafish retina, the population of HCs comprises up to four morphologically distinct subtypes.
View Article and Find Full Text PDFBackground: Neuromas are pathologic nerve distensions caused by a nerve's response to trauma, resulting in a dysfunctional to non-functional nerve. Depending on the severance of the affected nerve, the resulting neuroma can be differentiated into continuous and stump neuroma. While neuroma formation has been investigated in animal models with enormous regenerative capacity, the search for differences in human response to nerve trauma on a molecular level ultimately seeks to identify reasons for functionally successful versus unsuccessful regeneration after peripheral nerve trauma in man.
View Article and Find Full Text PDFRetinal degeneration protein 3 (RD3) is crucial for photoreceptor cell survival and linked to Leber Congenital Amaurosis type 12 (LCA12), a hereditary retinal disease in humans. RD3 inhibits photoreceptor guanylate cyclases GC-E and GC-F and is involved in transport of GCs from the inner to the outer segments. Otherwise, its role in photoreceptor physiology is poorly understood.
View Article and Find Full Text PDFThe vitamin A derivative all- trans-retinoic acid (ATRA) is an important biologically active metabolite that regulates a variety of essential biological processes in particular via gene-regulatory mechanisms. In the retina, ATRA is a light-dependent byproduct of the phototransduction cascade. Here, ATRA is not only needed for proper retinal development, but it also acts as a neuromodulator on horizontal cells, second-order inhibitory neurons in the outer retina, which reveal morphological and physiological changes when the retina is treated with ATRA.
View Article and Find Full Text PDFIn the mammalian retina, horizontal cells receive glutamatergic inputs from many rod and cone photoreceptors and return feedback signals to them, thereby changing photoreceptor glutamate release in a light-dependent manner. Horizontal cells also provide feedforward signals to bipolar cells. It is unclear, however, how horizontal cell signals also affect the temporal, spatial, and contrast tuning in retinal output neurons, the ganglion cells.
View Article and Find Full Text PDFAII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cascades.
View Article and Find Full Text PDFRetinal diseases, such as hereditary retinitis pigmentosa and age-related macular degeneration, are characterized by the progressive loss of photoreceptors. Histone deacetylase 6 (HDAC6) is considered as a stress surveillance factor and a potential target for neuroprotection and regeneration. Overexpression of HDAC6 has been connected to neurodegenerative disorders, and its suppression may provide protection.
View Article and Find Full Text PDFIn the vertebrate retina, horizontal cells (HCs) reveal homologous coupling by gap junctions (gj), which are thought to consist of different connexins (Cx). However, recent studies in mouse, rabbit and zebrafish retina indicate that individual HCs express more than one connexin. To provide further insights into the composition of gj connecting HCs and to determine whether HCs express multiple connexins, we examined the molecular identity and distribution of gj between HCs of the carp retina.
View Article and Find Full Text PDFElectrical coupling via gap junctions is an abundant phenomenon in the mammalian retina and occurs in all major cell types. Gap junction channels are assembled from different connexin subunits, and the connexin composition of the channel confers specific properties to the electrical synapse. In the mouse retina, gap junctions were demonstrated between intrinsically photosensitive ganglion cells and displaced amacrine cells but the underlying connexin remained undetermined.
View Article and Find Full Text PDFCryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds.
View Article and Find Full Text PDFThe identification of the proteins that make up the gap junction channels between rods and cones is of crucial importance to understand the functional role of photoreceptor coupling within the retinal network. In vertebrates, connexin proteins constitute the structural components of gap junction channels. Connexin36 is known to be expressed in cones whereas extensive investigations have failed to identify the corresponding connexin expressed in rods.
View Article and Find Full Text PDFHorizontal cells in the mouse retina are of the axon-bearing B-type and contribute to the gain control of photoreceptors and to the center-surround organization of bipolar cells by providing feedback and feedforward signals to photoreceptors and bipolar cells, respectively. Horizontal cells form two independent networks, coupled by dendro-dendritic and axo-axonal gap junctions composed of connexin57 (Cx57). In Cx57-deficient mice, occasionally the residual tracer coupling of horizontal cell somata was observed.
View Article and Find Full Text PDFCell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2, rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfl1, Rpe65 KO), by investigating metabolic processes relevant for different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major importance.
View Article and Find Full Text PDFIn the mouse retina, horizontal cells form an electrically coupled network and provide feedback signals to photoreceptors and feedforward signals to bipolar cells. Thereby, horizontal cells contribute to gain control at the first visual synapse and to the antagonistic organization of bipolar and ganglion cell receptive fields. However, the nature of horizontal cell output remains a matter of debate, just as the exact contribution of horizontal cells to center-surround antagonism.
View Article and Find Full Text PDFRetinitis pigmentosa (RP) relates to a group of hereditary neurodegenerative diseases of the retina. On the cellular level, RP results in the primary death of rod photoreceptors, caused by rod-specific mutations, followed by a secondary degeneration of genetically normal cones. Different mechanisms may influence the spread of cell death from one photoreceptor type to the other.
View Article and Find Full Text PDF