Alpine ecosystems are seriously threatened by climate change. One of the key mechanisms by which plants can adapt to changing environmental conditions is through evolutionary change. However, we still know little about the evolutionary potential in wild populations of long-lived alpine plants.
View Article and Find Full Text PDFAlpine plant communities are predicted to face range shifts and possibly extinctions with climate change. Fine-scale environmental variation such as nutrient availability or snowmelt timing may contribute to the ability of plant species to persist locally; however, variation in nutrient availability in alpine landscapes is largely unmeasured. On three mountains around Davos, Switzerland, we deployed Plant Root Simulator probes around 58 Salix herbacea plants along an elevational and microhabitat gradient to measure nutrient availability during the first 5 weeks of the summer growing season, and used in situ temperature loggers and observational data to determine date of spring snowmelt.
View Article and Find Full Text PDFClimate change is altering spring snowmelt patterns in alpine and arctic ecosystems, and these changes may alter plant phenology, growth and reproduction. To predict how alpine plants respond to shifts in snowmelt timing, we need to understand trait plasticity, its effects on growth and reproduction, and the degree to which plants experience a home-site advantage. We tested how the common, long-lived dwarf shrub Salix herbacea responded to changing spring snowmelt time by reciprocally transplanting turfs of S.
View Article and Find Full Text PDFHow climate-change induced environmental stress may alter the effects of inbreeding in patchy populations of rare species is poorly understood. We investigated the fitness of progeny from experimental self- and cross-pollinations in eight populations of different size of Echium wildpretii, a rare endemic plant of the arid subalpine zone of the Canarian island of Tenerife. As control treatments we used open pollination and autonomous selfing.
View Article and Find Full Text PDF