Publications by authors named "Janosch Schoon"

Renal cell carcinoma (RCC) is the most common form of kidney cancer, known for its immune evasion and resistance to chemotherapy. Evidence indicates that the SARS-CoV-2 virus may worsen outcomes for RCC patients, as well as patients with diminished renal function. Evidence suggests that the SARS-CoV-2 virus may exacerbate outcomes in RCC patients and those with impaired renal function.

View Article and Find Full Text PDF

Background/objective: Endoprostheses might fail due to complications such as implant loosening or periprosthetic infections. The surface topography of implant materials is known to influence osseointegration and attachment of pathogenic bacteria. Laser-Induced Periodic Surface Structures (LIPSS) can improve the surface topography of orthopedic implant materials.

View Article and Find Full Text PDF

Purpose: Periprosthetic joint infections (PJIs) are a very demanding complication of arthroplasty. Diagnosis of PJI and pathogen identification pose considerable challenges in clinical practice. We hypothesized that the pathogen-specific immune response to PJI reflects the infection process, provides clinically relevant information on disease course, and has the potential to further optimize antimicrobial therapy.

View Article and Find Full Text PDF

Primary leiomyosarcoma of bone (LMSoB) is extremely rare, comprising only <0.7% of primary malignant bone tumors, and is therefore considered an ultra-rare tumor entity. There is currently no consensus as to whether therapeutic strategies should be based on the biological characteristics of soft tissue leiomyosarcoma or on primary tumor localization in the bone.

View Article and Find Full Text PDF

The gadolinium-based contrast agent DOTA-Gd is clinically used in combination with local anesthetics for direct magnetic resonance arthrography. It remains unclear whether gadolinium uptake into cartilage is influenced by co-administration of bupivacaine or ropivacaine and whether DOTA-Gd alters their chondrotoxicity. Gadolinium quantification of chondrogenic spheroids revealed enhanced gadolinium uptake after simultaneous exposure to local anesthetics.

View Article and Find Full Text PDF

The advent of micro-physiological systems (MPS) in biomedical research has enabled the introduction of more complex and relevant physiological into in vitro models. The recreation of complex morphological features in three-dimensional environments can recapitulate otherwise absent dynamic interactions in conventional models. In this study we developed an advanced in vitro Renal Cell Carcinoma (RCC) that mimics the interplay between healthy and malignant renal tissue.

View Article and Find Full Text PDF
Article Synopsis
  • * Cold physical plasma (CPP) shows promise as a complementary treatment, potentially enhancing the effects of non-standard chemotherapy drugs like methotrexate and cisplatin in targeting ES.
  • * The study demonstrated that combining CPP with these chemotherapy agents improved treatment outcomes by reducing cell growth and increasing cell death in ES cell lines, suggesting a new approach for more effective cancer therapy.
View Article and Find Full Text PDF

Cobalt-chromium-molybdenum (CoCrMo) alloys are routinely used in arthroplasty. CoCrMo wear particles and ions derived from arthroplasty implants lead to macrophage-driven adverse local tissue reactions, which have been linked to an increased risk of periprosthetic joint infection after revision arthroplasty. While metal-induced cytotoxicity is well characterized in human macrophages, direct effects on their functionality have remained elusive.

View Article and Find Full Text PDF

In musculoskeletal surgery, the treatment of large bone defects is challenging and can require the use of bone graft substitutes to restore mechanical stability and promote host-mediated regeneration. The use of bone allografts is well-established in many bone regenerative procedures, but is associated with low rates of ingrowth due to pre-therapeutic graft processing. Cold physical plasma (CPP), a partially ionized gas that simultaneously generates reactive oxygen (O) and nitrogen (N) species, is suggested to be advantageous in biomedical implant processing.

View Article and Find Full Text PDF

Background: Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are used in regenerative medicine and related research involving immunomodulatory, anti-inflammatory, anti-fibrotic and regenerative functions. Isolation of BM-MSCs from samples obtained during total hip arthroplasty (THA) is routinely possible. Advanced age and comorbidities of the majority of patients undergoing THA limit their applicability.

View Article and Find Full Text PDF

The study of prostate cancer in vitro relies on established cell lines that lack important physiological characteristics, such as proper polarization and expression of relevant biomarkers. Microphysiological systems (MPS) can replicate cancer microenvironments and lead to cellular phenotypic changes that better represent organ physiology in vitro. In this study, we developed an MPS model comprising conventional prostate cancer cells to evaluate their activity under dynamic culture conditions.

View Article and Find Full Text PDF

Background: Minced cartilage implantation (MCI) has seen a renaissance in recent years. In this evolved technique, human articular cartilage is harvested with an arthroscopic shaver, augmented with platelet-rich plasma (PRP), and implanted with autologous thrombin. This modified technique combines the possibility of cell-based surgical cartilage repair with a minimally invasive autologous 1-step procedure.

View Article and Find Full Text PDF

Cold physical plasma (CPP) technology is of high promise for various medical applications. The interplay of specific components of physical plasma with living cells, tissues and organs on a structural and functional level is of paramount interest with the aim to induce therapeutic effects in a controlled and replicable fashion. In contrast to other medical disciplines such as dermatology and oromaxillofacial surgery, research reports on CPP application in orthopaedics are scarce.

View Article and Find Full Text PDF

Although Ewing's sarcoma (ES) is a rare, but very aggressive tumor disease affecting the musculoskeletal system, especially in children, it is very aggressive and difficult to treat. Although medical advances and the establishment of chemotherapy represent a turning point in the treatment of ES, resistance to chemotherapy, and its side effects, continue to be problems. New treatment methods such as the application of cold physical plasma (CPP) are considered potential supporting tools since CPP is an exogenous source of reactive oxygen and nitrogen species, which have similar mechanisms of action in the tumor cells as chemotherapy.

View Article and Find Full Text PDF

The success of hip arthroplasty is based on modern materials in addition to the continuous development of surgical techniques and clinical experience gained over six decades. The biocompatible implant materials used in hip arthroplasty can be textured or coated with biomimetic surfaces to ensure durable component ingrowth and moderate host response. Material integrity plays a critical role in the durability of the stable interface between implant components and periprosthetic tissues.

View Article and Find Full Text PDF

Background: The use of cold atmospheric plasma (CAP) in oncology has been intensively investigated over the past 15 years as it inhibits the growth of many tumor cells. It is known that reactive oxidative species (ROS) produced in CAP are responsible for this effect. However, to translate the use of CAP into medical practice, it is essential to know how CAP treatment affects non-malignant cells.

View Article and Find Full Text PDF

Bone generally displays a high intrinsic capacity to regenerate. Nonetheless, large osseous defects sometimes fail to heal. The treatment of such large segmental defects still represents a considerable clinical challenge.

View Article and Find Full Text PDF

Exogenous glucocorticoids increase the risk for osteoporosis, but the role of endogenous glucocorticoids remains elusive. Here, we describe the generation and validation of a loss- and a gain-of-function model of the cortisol producing enzyme 11β-HSD1 () to modulate the endogenous glucocorticoid conversion in SCP-1 cells - a model for human mesenchymal stem cells capable of adipogenic and osteogenic differentiation. CRISPR-Cas9 was successfully used to generate a cell line carrying a single base duplication and a 5 bp deletion in exon 5, leading to missense amino acid sequences after codon 146.

View Article and Find Full Text PDF

The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed.

View Article and Find Full Text PDF

Background: In 2020, more than 14,000 aseptic revision procedures for total hip arthroplasty (THA) were registered in Germany. Patient expectations of revision hip arthroplasty are not substantially different from expectations of primary hip replacement.

Outcome: However, revision surgery is associated with increased complication rates and a higher proportion of dissatisfied patients.

View Article and Find Full Text PDF

Particles released from cobalt-chromium-molybdenum (CoCrMo) alloys are considered common elicitors of chronic inflammatory adverse effects. There is a lack of data demonstrating particle numbers, size distribution and elemental composition of bone marrow resident particles which would allow for implementation of clinically relevant test strategies in bone marrow models at different degrees of exposure. The aim of this study was to investigate metal particle exposure in human periprosthetic bone marrow of three types of arthroplasty implants.

View Article and Find Full Text PDF

Cold physical plasma (CPP), a partially ionized gas that simultaneously generates reactive oxygen and nitrogen species, is suggested to provide advantages in regenerative medicine. Intraoperative CPP therapy targeting pathologies related to diminished bone quality could be promising in orthopedic surgery. Assessment of a clinically approved plasma jet regarding cellular effects on primary bone marrow mesenchymal stromal cells (hBM-MSCs) from relevant arthroplasty patient cohorts is needed to establish CPP-based therapeutic approaches for bone regeneration.

View Article and Find Full Text PDF