Text mining is a flexible technology that can be applied to numerous different tasks in biology and medicine. We present a system for extracting disease-gene associations from biomedical abstracts. The system consists of a highly efficient dictionary-based tagger for named entity recognition of human genes and diseases, which we combine with a scoring scheme that takes into account co-occurrences both within and between sentences.
View Article and Find Full Text PDFThe current version of the Human Disease Ontology (DO) (http://www.disease-ontology.org) database expands the utility of the ontology for the examination and comparison of genetic variation, phenotype, protein, drug and epitope data through the lens of human disease.
View Article and Find Full Text PDFInformation on protein subcellular localization is important to understand the cellular functions of proteins. Currently, such information is manually curated from the literature, obtained from high-throughput microscopy-based screens and predicted from primary sequence. To get a comprehensive view of the localization of a protein, it is thus necessary to consult multiple databases and prediction tools.
View Article and Find Full Text PDF