Publications by authors named "Janos Ludwig"

RIG-I is a cytosolic receptor of viral RNA essential for the immune response to numerous RNA viruses. Accordingly, RIG-I must sensitively detect viral RNA yet tolerate abundant self-RNA species. The basic binding cleft and an aromatic amino acid of the RIG-I C-terminal domain(CTD) mediate high-affinity recognition of 5'triphosphorylated and 5'base-paired RNA(dsRNA).

View Article and Find Full Text PDF

The presence of the cap structure on the 5'-end of in vitro-transcribed (IVT) mRNA determines its translation and stability, underpinning its use in therapeutics. Both enzymatic and co-transcriptional capping may lead to incomplete positioning of the cap on newly synthesized RNA molecules. IVT mRNAs are rapidly emerging as novel biologics, including recent vaccines against COVID-19 and vaccine candidates against other infectious diseases, as well as for cancer immunotherapies and protein replacement therapies.

View Article and Find Full Text PDF

While viral replication processes are largely understood, comparably little is known on cellular mechanisms degrading viral RNA. Some viral RNAs bear a 5'-triphosphate (PPP-) group that impairs degradation by the canonical 5'-3' degradation pathway. Here we show that the Nudix hydrolase 2 (NUDT2) trims viral PPP-RNA into monophosphorylated (P)-RNA, which serves as a substrate for the 5'-3' exonuclease XRN1.

View Article and Find Full Text PDF

Influenza A virus infection causes substantial morbidity and mortality in seasonal epidemic outbreaks, and more efficient treatments are urgently needed. Innate immune sensing of viral nucleic acids stimulates antiviral immunity, including cell-autonomous antiviral defense mechanisms that restrict viral replication. RNA oligonucleotide ligands that potently activate the cytoplasmic helicase retinoic-acid-inducible gene I (RIG-I) are promising candidates for the development of new antiviral therapies.

View Article and Find Full Text PDF

A hypoxic tumor microenvironment is linked to poor prognosis. It promotes tumor cell dedifferentiation and metastasis and desensitizes tumor cells to type-I IFN, chemotherapy, and irradiation. The cytoplasmic immunoreceptor retinoic acid-inducible gene-I (RIG-I) is ubiquitously expressed in tumor cells and upon activation by 5'-triphosphate RNA (3pRNA) drives the induction of type I IFN and immunogenic cell death.

View Article and Find Full Text PDF

Cytosolic DNA that emerges during infection with a retrovirus or DNA virus triggers antiviral type I interferon responses. So far, only double-stranded DNA (dsDNA) over 40 base pairs (bp) in length has been considered immunostimulatory. Here we found that unpaired DNA nucleotides flanking short base-paired DNA stretches, as in stem-loop structures of single-stranded DNA (ssDNA) derived from human immunodeficiency virus type 1 (HIV-1), activated the type I interferon-inducing DNA sensor cGAS in a sequence-dependent manner.

View Article and Find Full Text PDF

The cytosolic helicase retinoic acid-inducible gene-I (RIG-I) initiates immune responses to most RNA viruses by detecting viral 5'-triphosphorylated RNA (pppRNA). Although endogenous mRNA is also 5'-triphosphorylated, backbone modifications and the 5'-ppp-linked methylguanosine ((m7)G) cap prevent immunorecognition. Here we show that the methylation status of endogenous capped mRNA at the 5'-terminal nucleotide (N1) was crucial to prevent RIG-I activation.

View Article and Find Full Text PDF

Mammalian cells possess mechanisms to detect and defend themselves from invading viruses. In the cytosol, the RIG-I-like receptors (RLRs), RIG-I (retinoic acid-inducible gene I; encoded by DDX58) and MDA5 (melanoma differentiation-associated gene 5; encoded by IFIH1) sense atypical RNAs associated with virus infection. Detection triggers a signalling cascade via the adaptor MAVS that culminates in the production of type I interferons (IFN-α and β; hereafter IFN), which are key antiviral cytokines.

View Article and Find Full Text PDF

Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein STING is critically required for the initiation of type I interferon signalling upon detection of cytosolic DNA of both exogenous and endogenous origin.

View Article and Find Full Text PDF

In vitro-transcribed mRNA has great therapeutic potential to transiently express the encoded protein without the adverse effects of viral and DNA-based constructs. Mammalian cells, however, contain RNA sensors of the innate immune system that must be considered in the generation of therapeutic RNA. Incorporation of modified nucleosides both reduces innate immune activation and increases translation of mRNA, but residual induction of type I interferons (IFNs) and proinflammatory cytokines remains.

View Article and Find Full Text PDF

Sequencing of small RNA cDNA libraries is an important tool for the discovery of new RNAs and the analysis of their mutational status as well as expression changes across samples. It requires multiple enzyme-catalyzed steps, including sequential oligonucleotide adapter ligations to the 3' and 5' ends of the small RNAs, reverse transcription (RT), and PCR. We assessed biases in representation of miRNAs relative to their input concentration, using a pool of 770 synthetic miRNAs and 45 calibrator oligoribonucleotides, and tested the influence of Rnl1 and two variants of Rnl2, Rnl2(1-249) and Rnl2(1-249)K227Q, for 3'-adapter ligation.

View Article and Find Full Text PDF

RIG-I is a cytosolic helicase that senses 5'-ppp RNA contained in negative-strand RNA viruses and triggers innate antiviral immune responses. Calorimetric binding studies established that the RIG-I C-terminal regulatory domain (CTD) binds to blunt-end double-stranded 5'-ppp RNA a factor of 17 more tightly than to its single-stranded counterpart. Here we report on the crystal structure of RIG-I CTD bound to both blunt ends of a self-complementary 5'-ppp dsRNA 12-mer, with interactions involving 5'-pp clearly visible in the complex.

View Article and Find Full Text PDF

TLR9 detects DNA in endolysosomal compartments of human B cells and PDC. Recently, the concept of the CpG motif specificity of TLR9-mediated detection, specifically of natural phosphodiester DNA, has been challenged. Unlike in human B cells, CpG specificity of natural phosphodiester DNA recognition in human PDC has not been analyzed in the literature.

View Article and Find Full Text PDF

Antiviral immunity is triggered by immunorecognition of viral nucleic acids. The cytosolic helicase RIG-I is a key sensor of viral infections and is activated by RNA containing a triphosphate at the 5' end. The exact structure of RNA activating RIG-I remains controversial.

View Article and Find Full Text PDF

MicroRNAs are small regulatory RNAs with many biological functions and disease associations. We showed that in situ hybridization (ISH) using conventional formaldehyde fixation results in substantial microRNA loss from mouse tissue sections, which can be prevented by fixation with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide that irreversibly immobilizes the microRNA at its 5' phosphate. We determined optimal hybridization parameters for 130 locked nucleic acid probes by recording nucleic acid melting temperature during ISH.

View Article and Find Full Text PDF

In vitro-transcribed mRNAs encoding physiologically important proteins have considerable potential for therapeutic applications. However, in its present form, mRNA is unfeasible for clinical use because of its labile and immunogenic nature. Here, we investigated whether incorporation of naturally modified nucleotides into transcripts would confer enhanced biological properties to mRNA.

View Article and Find Full Text PDF

Distinct classes of small RNAs, 20-32 nucleotides long, play important regulatory roles for diverse cellular processes. It is therefore important to identify and quantify small RNAs as a function of development, tissue and cell type, in normal and disease states. Here we describe methods to prepare cDNA libraries from pools of small RNAs isolated from organisms, tissues or cells.

View Article and Find Full Text PDF

Background/aims: Four different ribozymes (Rz) targeting the hepatitis C virus (HCV) 5'-non-coding region (NCR) at nucleotide (nt) positions GUA 165 (Rz1), GUC 270 (Rz2), GUA 330 (Rz3) and GCA 348 (Rz1293) were compared for in vitro cleavage using a 455 nt HCV RNA substrate. The GUA 330 (Rz3) and GCA 348 (Rz1293) ribozymes, both targeting the HCV loop IV region, were found to be the most efficient, and were further analyzed in an in vitro translation system.

Methods: For this purpose RNA transcribed from a construct encoding a HCV-5'-NCR-luciferase fusion protein was used.

View Article and Find Full Text PDF

This report describes a one-pot synthesis of alpha-P-borano-, alpha-P-thio-, and alpha-P-seleno-modified nucleoside diphosphate analogues that are otherwise difficult to obtain. The key step involves the intramolecular nucleophilic attack by an amino group in 5 to remove the gamma-phosphate. The absolute configurations of P-diastereomers were confirmed by analysis of their 1H NMR.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session2sjcbjkusqnba0urtepui7c04q3ac5to): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once