Publications by authors named "Janos Hajdu"

The idea of using ultrashort X-ray pulses to obtain images of single proteins frozen in time has fascinated and inspired many. It was one of the arguments for building X-ray free-electron lasers. According to theory, the extremely intense pulses provide sufficient signal to dispense with using crystals as an amplifier, and the ultrashort pulse duration permits capturing the diffraction data before the sample inevitably explodes.

View Article and Find Full Text PDF

Background: Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway.

Methods: A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System.

View Article and Find Full Text PDF

The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines.

View Article and Find Full Text PDF

Electron crystallography of sub-micrometre-sized 3D protein crystals has emerged recently as a valuable field of structural biology. crystallization methods, utilizing lipidic mesophases, particularly lipidic cubic phases (LCPs), can produce high-quality 3D crystals of membrane proteins (MPs). A major step towards realizing 3D electron crystallography of MP crystals, grown , is to demonstrate electron diffraction from such crystals.

View Article and Find Full Text PDF

Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited.

View Article and Find Full Text PDF

An improved analysis for single-particle imaging (SPI) experiments, using the limited data, is presented here. Results are based on a study of bacteriophage PR772 performed at the Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source as part of the SPI initiative. Existing methods were modified to cope with the shortcomings of the experimental data: inaccessibility of information from half of the detector and a small fraction of single hits.

View Article and Find Full Text PDF

Non-enveloped icosahedral double-stranded RNA (dsRNA) viruses possess multifunctional capsids required for their proliferation. Whereas protozoan/fungal dsRNA viruses have a relatively simple capsid structure, which suffices for the intracellular phase in their life cycle, metazoan dsRNA viruses have acquired additional structural features as an adaptation for extracellular cell-to-cell transmission in multicellular hosts. Here, we present the first atomic model of a metazoan dsRNA totivirus-like virus and the structure reveals three unique structural traits: a C-terminal interlocking arm, surface projecting loops, and an obstruction at the pore on the 5-fold symmetry axis.

View Article and Find Full Text PDF

Flavin mononucleotide (FMN) belongs to the large family of flavins, ubiquitous yellow-coloured biological chromophores that contain an isoalloxazine ring system. As a cofactor in flavoproteins, it is found in various enzymes and photosensory receptors, like those featuring the light-oxygen-voltage (LOV) domain. The photocycle of FMN is triggered by blue light and proceeds via a cascade of intermediate states.

View Article and Find Full Text PDF
Article Synopsis
  • Intense x-ray free-electron lasers (XFELs) show potential for high-resolution imaging of nanoscale and biological systems, but current single-shot resolutions are not as good as static experiment averages.
  • This study combines computational simulations with experimental results to examine ultrafast diffractive imaging of sucrose clusters, providing a better understanding of dynamic scattering in XFEL applications.
  • The findings highlight the importance of non-linear x-ray interactions and suggest that sophisticated computational models can optimize imaging parameters for improved ultrafast experiments.
View Article and Find Full Text PDF

Bacteriophage PR772, a member of the family, has a 70 nm diameter icosahedral protein capsid that encapsulates a lipid membrane, dsDNA, and various internal proteins. An icosahedrally averaged CryoEM reconstruction of the wild-type virion and a localized reconstruction of the vertex region reveal the composition and the structure of the vertex complex along with new protein conformations that play a vital role in maintaining the capsid architecture of the virion. The overall resolution of the virion is 2.

View Article and Find Full Text PDF

Aerosol nanoparticle injectors are fundamentally important for experiments where container-free sample handling is needed to study isolated nanoparticles. The injector consists of a nebuliser, a differential pumping unit, and an aerodynamic lens to create and deliver a focused particle beam to the interaction point inside a vacuum chamber. The tightest focus of the particle beam is close to the injector tip.

View Article and Find Full Text PDF

The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization.

View Article and Find Full Text PDF

Ultra-bright femtosecond X-ray pulses generated by X-ray free-electron lasers (XFELs) can be used to image high-resolution structures without the need for crystallization. For this approach, aerosol injection has been a successful method to deliver 70-2000 nm particles into the XFEL beam efficiently and at low noise. Improving the technique of aerosol sample delivery and extending it to single proteins necessitates quantitative aerosol diagnostics.

View Article and Find Full Text PDF
Article Synopsis
  • The European X-ray Free-Electron Laser (XFEL) is the first of its kind to deliver X-ray pulses at megahertz pulse rates, vastly improving on previous technologies.
  • Researchers have successfully measured high-quality diffraction data at these new pulse rates, validating the laser's capabilities.
  • Two complete datasets were collected: one from lysozyme and another from a β-lactamase complex, demonstrating the potential for advanced structural analysis and dynamic measurements in molecular science.
View Article and Find Full Text PDF

Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle.

View Article and Find Full Text PDF

Nucleocytoplasmic large DNA viruses (NCLDVs) blur the line between viruses and cells. Melbournevirus (MelV, family Marseilleviridae) belongs to a new family of NCLDVs. Here we present an electron cryo-microscopy structure of the MelV particle, with the large triangulation number T = 309 constructed by 3080 pseudo-hexagonal capsomers.

View Article and Find Full Text PDF

Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus.

View Article and Find Full Text PDF

This study explores the capabilities of the Coherent X-ray Imaging Instrument at the Linac Coherent Light Source to image small biological samples. The weak signal from small samples puts a significant demand on the experiment. Aerosolized particles of ∼40 nm in diameter were injected into the submicrometre X-ray focus at a reduced pressure.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7979qp16e3qn4g242afpdo6qqk2i6sts): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once