Publications by authors named "Janos Abonyi"

The analysis of event sequences with temporal dependencies holds substantial importance across various domains, including healthcare. This study introduces a novel approach that combines sequential rule mining and survival analysis to uncover significant associations and temporal patterns within event sequences. By integrating these techniques, we address the limitations linked to the loss of temporal information.

View Article and Find Full Text PDF

This article focuses on improving indoor positioning data through data reconciliation. Indoor positioning systems are increasingly used for resource tracking to monitor manufacturing and warehouse processes. However, measurement errors due to noise can negatively impact system performance.

View Article and Find Full Text PDF

This paper highlights that metrics from the machine learning field (e.g., entropy and information gain) used to qualify a classifier model can be used to evaluate the effectiveness of separation systems.

View Article and Find Full Text PDF

Identifying communities in multilayer networks is crucial for understanding the structural dynamics of complex systems. Traditional community detection algorithms often overlook the presence of overlapping edges within communities, despite the potential significance of such relationships. In this work, we introduce a novel modularity measure designed to uncover communities where nodes share specific multiple facets of connectivity.

View Article and Find Full Text PDF

Model-based assessment of the potential impacts of variables on the Sustainable Development Goals (SDGs) can bring great additional information about possible policy intervention points. In the context of sustainability planning, machine learning techniques can provide data-driven solutions throughout the modeling life cycle. In a changing environment, existing models must be continuously reviewed and developed for effective decision support.

View Article and Find Full Text PDF

Frequent sequence pattern mining is an excellent tool to discover patterns in event chains. In complex systems, events from parallel processes are present, often without proper labelling. To identify the groups of events related to the subprocess, frequent sequential pattern mining can be applied.

View Article and Find Full Text PDF

The parameter identification of failure models for composite plies can be cumbersome, due to multiple effects as the consequence of brittle fracture. Our work proposes an iterative, nonlinear design of experiments (DoE) approach that finds the most informative experimental data to identify the parameters of the Tsai-Wu, Tsai-Hill, Hoffman, Hashin, max stress and Puck failure models. Depending on the data, the models perform differently, therefore, the parameter identification is validated by the Euclidean distance of the measured points to the closest ones on the nominal surface.

View Article and Find Full Text PDF

This paper presents a methodology that aims to enhance the accuracy of probability density estimation in mobility pattern analysis by integrating prior knowledge of system dynamics and contextual information into the particle filter algorithm. The quality of the data used for density estimation is often inadequate due to measurement noise, which significantly influences the distribution of the measurement data. Thus, it is crucial to augment the information content of the input data by incorporating additional sources of information beyond the measured position data.

View Article and Find Full Text PDF

In real-world classification problems, it is important to build accurate prediction models and provide information that can improve decision-making. Decision-support tools are often based on network models, and this article uses information encoded by social networks to solve the problem of employer turnover. However, understanding the factors behind black-box prediction models can be challenging.

View Article and Find Full Text PDF

Detecting chemical, biological, radiological and nuclear (CBRN) incidents is a high priority task and has been a topic of intensive research for decades. Ongoing technological, data processing, and automation developments are opening up new potentials in CBRN protection, which has become a complex, interdisciplinary field of science. According to it, chemists, physicists, meteorologists, military experts, programmers, and data scientists are all involved in the research.

View Article and Find Full Text PDF

This paper proposes a monitoring procedure based on characterizing state probability distributions estimated using particle filters. The work highlights what types of information can be obtained during state estimation and how the revealed information helps to solve fault diagnosis tasks. If a failure is present in the system, the output predicted by the model is inconsistent with the actual output, which affects the operation of the estimator.

View Article and Find Full Text PDF

While the primary focus of Industry 4.0 revolves around extensive digitalization, Industry 5.0, on the other hand, seeks to integrate innovative technologies with human actors, signifying an approach that is more value-driven than technology-centric.

View Article and Find Full Text PDF

Non-negative matrix factorization (NMF) efficiently reduces high dimensionality for many-objective ranking problems. In multi-objective optimization, as long as only three or four conflicting viewpoints are present, an optimal solution can be determined by finding the Pareto front. When the number of the objectives increases, the multi-objective problem evolves into a many-objective optimization task, where the Pareto front becomes oversaturated.

View Article and Find Full Text PDF

This paper describes a framework for detecting welding errors using 3D scanner data. The proposed approach employs density-based clustering to compare point clouds and identify deviations. The discovered clusters are then classified according to standard welding fault classes.

View Article and Find Full Text PDF

One of the main challenges of Industry 4.0 is how advanced sensors and sensing technologies can be applied through the Internet of Things layers of existing manufacturing. This is the so-called Brownfield Industry 4.

View Article and Find Full Text PDF

Quality function deployment (QFD) has been a widely-acknowledged tool for translating customer requirements into quality product characteristics based on which product development strategies and focus areas are identified. However, the QFD method considers the correlation and effect between development parameters, but it is not directly implemented in the importance ranking of development actions. Therefore, the cross-relationships between development parameters and their impact on customer requirement satisfaction are often neglected.

View Article and Find Full Text PDF

The discovery of human mobility patterns of cities provides invaluable information for decision-makers who are responsible for redesign of community spaces, traffic, and public transportation systems and building more sustainable cities. The present article proposes a possibilistic fuzzy c-medoid clustering algorithm to study human mobility. The proposed medoid-based clustering approach groups the typical mobility patterns within walking distance to the stations of the public transportation system.

View Article and Find Full Text PDF

Climate change can cause multiply potential health issues in urban areas, which is the most susceptible environment in terms of the presently increasing climate volatility. Urban greening strategies make an important part of the adaptation strategies which can ameliorate the negative impacts of climate change. It was aimed to study the potential impacts of different kinds of greenings against the adverse effects of climate change, including waterborne, vector-borne diseases, heat-related mortality, and surface ozone concentration in a medium-sized Hungarian city.

View Article and Find Full Text PDF

The present research presents a framework that supports the development and operation of machine-learning (ML) algorithms to develop, maintain and manage the whole lifecycle of modeling software sensors related to complex chemical processes. Our motivation is to take advantage of ML and edge computing and offer innovative solutions to the chemical industry for difficult-to-measure laboratory variables. The purpose of software sensor models is to continuously forecast the quality of products to achieve effective quality control, maintain the stable production condition of plants, and support efficient, environmentally friendly, and harmless laboratory work.

View Article and Find Full Text PDF

The Promethee-GAIA method is a multicriteria decision support technique that defines the aggregated ranks of multiple criteria and visualizes them based on Principal Component Analysis (PCA). In the case of numerous criteria, the PCA biplot-based visualization do not perceive how a criterion influences the decision problem. The central question is how the Promethee-GAIA-based decision-making process can be improved to gain more interpretable results that reveal more characteristic inner relationships between the criteria.

View Article and Find Full Text PDF

A suitable tool for monitoring the spread of SARS-CoV-2 is to identify potential sampling points in the wastewater collection system that can be used to monitor the distribution of COVID-19 disease affected clusters within a city. The applicability of the developed methodology is presented through the description of the 72,837 population equivalent wastewater collection system of the city of Nagykanizsa, Hungary and the results of the analytical and epidemiological measurements of the wastewater samples. The wastewater sampling was conducted during the 3rd wave of the COVID-19 epidemic.

View Article and Find Full Text PDF

The targeted shortening of sensor development requires short and convincing verification tests. The goal of the development of novel verification methods is to avoid or reduce an excessive amount of testing and identify tests that guarantee that the assumed failure will not happen in practice. In this paper, a method is presented that results in the test loads of such a verification.

View Article and Find Full Text PDF

The data article presents a dataset and a tool for news-based monitoring of sustainable development goals defined by the United Nations. The presented dataset was created by structured queries of the GDELT database based on the categories of the World Bank taxonomy matched to sustainable development goals. The Google BigQuery SQL scripts and the results of the related network analysis are attached to the data to provide a toolset for the strategic management of sustainability issues.

View Article and Find Full Text PDF

This study aims to bring about a novel approach to the analysis of Sustainable Development Goals (SDGs) based solely on the appearance of news. Our purpose is to provide a monitoring tool that enables world news to be detected in an SDG-oriented manner, by considering multilingual as well as wide geographic coverage. The association of the goals with news basis the World Bank Group Topical Taxonomy, from which the selection of search words approximates the 17 development goals.

View Article and Find Full Text PDF