Publications by authors named "Jano Nunez-Zapata"

Article Synopsis
  • Cryptic species in lichen-forming fungi are prevalent, particularly within the Parmeliaceae family.
  • Researchers focused on asexually reproducing species to clarify their classification and found notable genetic diversity among them.
  • By analyzing genome-wide SNP data, they identified four distinct clades as separate species, including two new species, contributing to a better understanding of their evolutionary relationships.
View Article and Find Full Text PDF

Lichens thrive in rocky coastal areas in temperate and cold regions of both hemispheres. Species of the genus Lichina, which form characteristic black fruiting thalli associated with cyanobacteria, often create distinguishable bands in the intertidal and supralittoral zones. The present study uses a comprehensive specimen dataset and four gene loci to (1) delineate and discuss species boundaries in this genus, (2) assess evolutionary relationships among species, and (3) infer the most likely causes of their current geographic distribution in the Northern and Southern hemispheres.

View Article and Find Full Text PDF

AbstractThe extent to which species ranges reflect intrinsic physiological tolerances is a major question in evolutionary ecology. To date, consensus has been hindered by the limited tractability of experimental approaches across most of the tree of life. Here, we apply a macrophysiological approach to understand how hematological traits related to oxygen transport shape elevational ranges in a tropical biodiversity hot spot.

View Article and Find Full Text PDF

We studied the evolutionary history of the Parmeliaceae (Lecanoromycetes, Ascomycota), one of the largest families of lichen-forming fungi with complex and variable morphologies, also including several lichenicolous fungi. We assembled a six-locus data set including nuclear, mitochondrial and low-copy protein-coding genes from 293 operational taxonomic units (OTUs). The lichenicolous lifestyle originated independently three times in lichenized ancestors within Parmeliaceae, and a new generic name is introduced for one of these fungi.

View Article and Find Full Text PDF

The genetic diversity and population structure of the foliose lichenized fungus Parmelina tiliacea has been analyzed through its geographical range, including samples from Macaronesia (Canary Islands), the Mediterranean, and Eurosiberia. DNA sequences from the nuclear ribosomal internal transcribed spacer, the mitochondrial large subunit ribosomal RNA gene, and the translation elongation factor 1-α were used as molecular markers. The haplotypes of the three markers and the molecular variance analyses of multilocus haplotypes showed the highest diversity in the Canary Islands, while restricted haplotypes occurred at high frequencies in Mediterranean coastal samples.

View Article and Find Full Text PDF