Publications by authors named "Jano Dicroce-Giacobini"

Lysosomes are acidic organelles responsible for lipid catabolism, and their functions can be disrupted by cationic amphiphilic drugs that neutralize lumenal pH and thereby inhibit most lysosomal hydrolases. These drugs can also induce lysosomal membrane permeabilization and cancer cell death, but the underlying mechanism remains elusive. Here, we uncover that the cationic amphiphilic drugs induce a substantial accumulation of cytolytic lysoglycerophospholipids within the lysosomes of cancer cells, and thereby prevent the recycling of lysoglycerophospholipids to produce common membrane glycerophospholipids.

View Article and Find Full Text PDF

Introduction: Repurposing of cationic amphiphilic drugs (CADs) emerges as an attractive therapeutic solution against various cancers, including leukemia. CADs target lysosomal lipid metabolism and preferentially kill cancer cells via induction of lysosomal membrane permeabilization, but the exact effects of CADs on the lysosomal lipid metabolism remain poorly illuminated.

Objectives: We aimed to systematically monitor CAD-induced alterations in the quantitative lipid profiles of leukemia cell lines in order to chart effects of CADs on the metabolism of various lipid classes present in these cells.

View Article and Find Full Text PDF

Shotgun lipidomics is a powerful tool that enables simultaneous and fast quantification of diverse lipid classes through mass spectrometry based analyses of directly infused crude lipid extracts. We present here a shotgun lipidomics platform established to quantify 38 lipid classes belonging to four lipid categories present in mammalian samples and show the fine-tuning and comprehensive evaluation of its experimental parameters and performance. We first determined for all the targeted lipid classes the collision energy levels optimal for the recording of their lipid class- and species-specific fragment ions and fine-tuned the energy levels applied in the platform.

View Article and Find Full Text PDF

Repurposing cationic amphiphilic drugs (CAD) for cancer treatment is emerging as an attractive means to enhance the efficacy of chemotherapy. Many commonly used CADs, including several cation amphiphilic antihistamines and antidepressants, induce cancer-specific, lysosome-dependent cell death and sensitize cancer cells to chemotherapy. CAD-induced inhibition of lysosomal acid sphingomyelinase is necessary, but not sufficient, for the subsequent lysosomal membrane permeabilization and cell death, while other pathways regulating this cell death pathway are largely unknown.

View Article and Find Full Text PDF