Fibroblast-ECM (dys)regulation is associated with a plethora of diseases. The ECM acts as a reservoir of inflammatory factors and cytokines that mediate molecular mechanisms within cardiac cell populations. The role of ECM-mitochondria crosstalk in the development and progression of cardiac disorders remains uncertain.
View Article and Find Full Text PDFIntroduction: Recent years have witnessed remarkable progress in the development of cell-based in vitro models aimed at predicting drug permeability, particularly focusing on replicating the barrier properties of the blood-brain barrier (BBB), intestinal epithelium, and lung epithelium.
Area Covered: This review provides an overview of 2D in vitro platforms, including monocultures and co-culture systems, highlighting their respective advantages and limitations. Additionally, it discusses tools and techniques utilized to overcome these limitations, paving the way for more accurate predictions of drug permeability.
Extracellular matrix (ECM) plays a critical role in cell behavior and development. Organoids generated from human induced pluripotent stem cells (hiPSCs) are in the spotlight of many research areas. However, the lack of physiological cues in classical cell culture materials hinders efficient iPSC differentiation.
View Article and Find Full Text PDFMonitoring of extracellular matrix (ECM) microstructure is essential in studying structure-associated cellular processes, improving cellular function, and for ensuring sufficient mechanical integrity in engineered tissues. This paper describes a novel method to study the microscale alignment of the matrix in engineered tissue scaffolds (ETS) that are usually composed of a variety of biomacromolecules derived by cells. First, a trained loading function was derived from Raman spectra of highly aligned native tissue via principal component analysis (PCA), where prominent changes associated with specific Raman bands (e.
View Article and Find Full Text PDFThe extracellular matrix (ECM) provides both physical and chemical cues that dictate cell function and contribute to muscle maintenance. Muscle cells require efficient mitochondria to satisfy their high energy demand, however, the role the ECM plays in moderating mitochondrial function is not clear. We hypothesized that the ECM produced by stromal cells with mitochondrial dysfunction (Barth syndrome, BTHS) provides cues that contribute to metabolic dysfunction independent of muscle cell health.
View Article and Find Full Text PDFAltered extracellular matrix (ECM) production is a hallmark of many fibroproliferative diseases, including certain cancers. The high incidence of glycan-rich components within altered ECM makes the use of glycan-binding proteins such as Galectin-3 (G3) a promising therapeutic strategy. The complexity of ECM as a rich 3D network of proteins with varied glycosylation states makes it challenging to determine the retention of glycan-binding proteins in altered ECM environments.
View Article and Find Full Text PDFThe organization of proteins is an important determinant of functionality in soft tissues. However, such organization is difficult to monitor over time in soft tissue with complex compositions. Here, we establish a method to determine the alignment of proteins in soft tissues of varying composition by polarized Raman spectroscopy (PRS).
View Article and Find Full Text PDF