Drop-cast crosslinked hydrogels are a common platform for enzymatic electrochemical biosensors. Despite the widespread use of these complex systems, there are still several questions about how their physicochemical properties affect their performance, stability, and reproducibility. In this work, first-generation faradaic biosensors composed of glucose oxidase and branched polyethyleneimine (BPEI) are prepared using either glutaraldehyde (GA) or ethylene glycol diglycidyl ether (EGDGE) as crosslinkers.
View Article and Find Full Text PDFThe inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes.
View Article and Find Full Text PDFManipulating the composition of a mixed alkylthiol self-assembled monolayer (SAM) modified gold surface using both electrochemical and electroless methods is demonstrated. Through the use of fluorophore labeled thiolated DNA and in situ fluorescence microscopy with a gold single crystal bead electrode, a procedure was developed to study and quantify the selective desorption of an alkylthiolate SAM. This method enabled a self-consistent measurement of the removal of the SAM from the 111 surface compared to the 100 surface region at various potentials.
View Article and Find Full Text PDFThe use of a single crystal gold bead electrode is demonstrated for characterization of self-assembled monolayers (SAM)s formed on the bead surface expressing a complete set of face centered cubic (fcc) surface structures represented by a stereographic projection. Simultaneous analysis of many crystallographic orientations was accomplished through the use of an in situ fluorescence microscopic imaging technique coupled with electrochemical measurements. SAMs were prepared from different classes of molecules, which were modified with a fluorescent tag enabling characterization of the influence of electrical potential and a direct comparison of the influence of surface structure on SAMs adsorbed onto low index, vicinal and chiral surfaces.
View Article and Find Full Text PDFIn situ examination of the reductive desorption process for Au microelectrodes modified with a thiol self-assembled monolayer (SAM) using fluorescence microscopy enabled the study of the fate of the desorbed thiolate species. The Bodipy labeled alkyl-thiol SAM, when adsorbed, is not fluorescent due to quenching by the Au surface. Once reductively desorbed, the thiolate molecules fluoresce and their direction and speed are monitored.
View Article and Find Full Text PDF