Off-stoichiometric NiFeO ultrathin films (x < 2.1) with varying Ni content x and thickness 16 (±2) nm were grown on MgO(001) by reactive molecular beam epitaxy. Synchrotron-based high-resolution X-ray diffraction measurements reveal vertical compressive strain for all films, resulting from a lateral pseudomorphic adaption of the film to the substrate lattice without any strain relaxation.
View Article and Find Full Text PDFUltrathin CoxFe3-xO4 films of high structural quality and with different Co content ( = 0.6-1.2) were prepared by reactive molecular beam epitaxy on MgO(001) substrates.
View Article and Find Full Text PDFHere we present an approach to functionalize silanized single-walled carbon nanotubes (SWNTs) through copper-free click chemistry for the assembly of inorganic and biological nanohybrids. The nanotube functionalization route involves silanization and strain-promoted azide-alkyne cycloaddition reactions (SPACC). This was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and Fourier transform infra-red spectroscopy.
View Article and Find Full Text PDFIntegration of solvothermal reaction products into complex thin-layer architectures is frequently achieved by combinations of layer transfer and subtractive lithography, whereas direct additive substrate patterning with solvothermal reaction products has remained challenging. We report reactive additive capillary stamping under solvothermal conditions as a parallel contact-lithographic access to patterns of solvothermal reaction products in thin-layer configurations. To this end, corresponding precursor inks are infiltrated into mechanically robust mesoporous aerogel stamps derived from double-network hydrogels.
View Article and Find Full Text PDFHere, we present the (element-specific) magnetic properties and cation ordering for ultrathin Co-rich cobalt ferrite films. Two Co-rich CoxFe3-xO4 films with different stoichiometry (x=1.1 and x=1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2021
We report an optimized two-step thermopolymerization process carried out in contact with micropatterned molds that yields porous phenolic resin dual-use stamps with topographically micropatterned contact surfaces. With these stamps, two different parallel additive substrate manufacturing methods can be executed: capillary stamping and decal transfer microlithography. Under moderate contact pressures, the porous phenolic resin stamps are used for nondestructive ink transfer to substrates by capillary stamping.
View Article and Find Full Text PDFWe report the parallel generation of close-packed ordered silane nanodot arrays with nanodot diameters of few 100 nm and nearest-neighbor distances in the one-micron range. Capillary nanostamping of heterocyclic silanes coupled with ring-opening triggered by hydroxyl groups at the substrate surfaces yields nanodots consisting of silane monolayers with exposed terminal functional groups. Using spongy mesoporous silica stamps with methyl-terminated mesopore walls inert towards the heterocyclic silanes, we could manually perform multiple successive stamping cycles under ambient conditions without interruptions for ink refilling.
View Article and Find Full Text PDF