Publications by authors named "Jannis Meents"

Apart from the most prominent symptoms in Autism spectrum disorder (ASD), namely deficits in social interaction, communication and repetitive behavior, patients often show abnormal sensory reactivity to environmental stimuli. Especially potentially painful stimuli are reported to be experienced in a different way compared to healthy persons. In our present study, we identified an ASD patient carrying compound heterozygous mutations in the voltage-gated sodium channel (VGSC) Na 1.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown.

View Article and Find Full Text PDF

Mutations in voltage-gated sodium channels (Navs) can cause alterations in pain sensation, such as chronic pain diseases like inherited erythromelalgia. The mutation causing inherited erythromelalgia, Nav1.7 p.

View Article and Find Full Text PDF

Background And Purpose: The voltage-gated sodium channel Na 1.7 is essential for adequate perception of painful stimuli. Mutations in the encoding gene, SCN9A, cause various pain syndromes in humans.

View Article and Find Full Text PDF

This article describes the effect of the pyrethroid insecticide deltamethrin on the cardiac voltage-gated sodium channel Nav1.5. Two concentrations of deltamethrin were used and the effects were compared with those of the sea anemone toxin ATx-II and β4-peptide, which is the C-terminus of the Nav channel β-subunit.

View Article and Find Full Text PDF

Voltage-gated sodium channels are responsible not only for the fast upstroke of the action potential, but they also modify cellular excitability via persistent and resurgent currents. Insecticides act via permanently opening sodium channels to immobilize the animals. Cellular recordings performed decades ago revealed distinctly hooked tail currents induced by these compounds.

View Article and Find Full Text PDF

Ion channels contribute fundamental properties to cell membranes. Although highly diverse in conductivity, structure, location, and function, many of them can be regulated by common mechanisms, such as voltage or (de-)phosphorylation. Primarily considering ion channels involved in the nociceptive system, this review covers more novel and less known features.

View Article and Find Full Text PDF

The homotrimeric P2X3 receptor, one of the seven members of the ATP-gated P2X receptor family, plays a crucial role in sensory neurotransmission. P2X3 receptor antagonists have been identified as promising drugs to treat chronic cough and are suggested to offer pain relief in chronic pain such as neuropathic pain. Here, we analysed whether compounds affect P2X3 receptor activity by high-throughput screening of the Spectrum Collection of 2000 approved drugs, natural products and bioactive substances.

View Article and Find Full Text PDF

The chronic pain syndrome inherited erythromelalgia (IEM) is attributed to mutations in the voltage-gated sodium channel (NaV) 1.7. Still, recent studies targeting NaV1.

View Article and Find Full Text PDF
Article Synopsis
  • Small fiber neuropathy (SFN) is a persistent pain condition with limited treatment options; a case study highlights an individualized treatment response using iPSC technology in a therapy-resistant patient.
  • In the study, the patient's specific nociceptor excitability was measured in vitro, revealing changes that were corrected by lacosamide, an FDA-approved medication, leading to significant pain reduction from 7.5 to 1.5 on a visual analogue scale.
  • Results showed objective evidence of decreased peripheral nociceptor activity through microneurography, demonstrating successful application of precision medicine to tailor treatment based on the patient's unique cellular responses.
View Article and Find Full Text PDF

The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in pain-sensing neurons and other tissues and has become a major target in the development of novel pharmaceuticals. A remarkable feature of the channel is its long list of activators, many of which we are exposed to in daily life. Many of these agonists induce pain and inflammation, making TRPA1 a major target for anti-inflammatory and analgesic therapies.

View Article and Find Full Text PDF

Mutations in voltage-gated sodium channels are associated with altered pain perception in humans. Most of these mutations studied to date present with a direct and intuitive link between the altered electrophysiological function of the channel and the phenotype of the patient. In this study, we characterize a variant of Nav1.

View Article and Find Full Text PDF

Background And Purpose: Oxycodone is a potent semi-synthetic opioid that is commonly used for the treatment of severe acute and chronic pain. However, treatment with oxycodone can lead to cardiac electrical changes, such as long QT syndrome, potentially inducing sudden cardiac arrest. Here, we investigate whether the cardiac side effects of oxycodone can be explained by modulation of the cardiac Na 1.

View Article and Find Full Text PDF

Key Points: The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress.

View Article and Find Full Text PDF

The TRPA1 ion channel is expressed in nociceptive (pain-sensitive) somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1.

View Article and Find Full Text PDF

Gain-of-function mutations in the tetrodotoxin (TTX) sensitive voltage-gated sodium channel (Nav) Nav1.7 have been identified as a key mechanism underlying chronic pain in inherited erythromelalgia. Mutations in TTX resistant channels, such as Nav1.

View Article and Find Full Text PDF

Key Points: The transient receptor potential ankyrin 1 (TRPA1) ion channel is expressed in nociceptive neurons and its activation causes ongoing pain and inflammation; TRPA1 is thought to play an important role in inflammation in the airways. TRPA1 is sensitised by repeated stimulation with chemical agonists in a calcium-free environment and this sensitisation is very long lasting following agonist removal. We show that agonist-induced sensitisation is independent of the agonist's binding site and is also independent of ion channel trafficking or of other typical signalling pathways.

View Article and Find Full Text PDF

Background: The capsaicin and heat responsive ion channel TRPV1 is expressed on trigeminal nociceptive neurons and has been implicated in the pathophysiology of migraine attacks. Here we investigate the efficacy of two TRPV1 channel antagonists in blocking trigeminal activation using two in vivo models of migraine.

Methods: Male Sprague-Dawley rats were used to study the effects of the TRPV1 antagonists JNJ-38893777 and JNJ-17203212 on trigeminal activation.

View Article and Find Full Text PDF

Migraine is a debilitating disorder of the CNS. Although therapeutic options for migraine attacks have tremendously advanced with the development of triptans more than a decade ago, several conditions (such as vascular disease) restrict their use. Moreover, some patients do not respond to triptans and other currently available medications.

View Article and Find Full Text PDF

Migraine is among the most prevalent headache disorders and results from dysfunctions within the trigeminovascular system (TVS). The inflammatory processes that have been suggested to occur in the cascade of events resulting in migraine sensitise trigeminal nociceptors, possibly causing hyperalgesia and allodynia. Trigeminal nociceptors express the heat- and capsaicin-gated channel TRPV1, which seems to play a significant role in the development of peripheral and central sensitisation and of hyperalgesia and allodynia.

View Article and Find Full Text PDF