In response to the pressing challenges of the ongoing biodiversity crisis, the protection of endangered species and their habitats, as well as the monitoring of invasive species are crucial. Habitat suitability modeling (HSM) is often treated as the silver bullet to address these challenges, commonly relying on generic variables sourced from widely available datasets. However, for species with high habitat requirements, or for modeling the suitability of habitats within the geographic range of a species, variables at a coarse level of detail may fall short.
View Article and Find Full Text PDFEcosystem functions and services are severely threatened by unprecedented global loss in biodiversity. To counteract these trends, it is essential to develop systems to monitor changes in biodiversity for planning, evaluating, and implementing conservation and mitigation actions. However, the implementation of monitoring systems suffers from a trade-off between grain (i.
View Article and Find Full Text PDFConventional practices in species distribution modeling lack predictive power when the spatial structure of data is not taken into account. However, choosing a modeling approach that accounts for overfitting during model training can improve predictive performance on spatially separated test data, leading to more reliable models. This study introduces (https://github.
View Article and Find Full Text PDFIn Germany, the knowledge about ticks infesting bats is limited, and is restricted only to a few studies, most of them dating back decades. To further improve our knowledge on ticks parasitising bats, healthy and sick bats in central Germany were examined for ticks. In total 519 larvae and one nymph of Carios vespertilionis were collected from nine bat species: Eptesicus nilssonii, Eptesicus serotinus, Myotis daubentonii, Myotis myotis, Nyctalus leisleri, Pipistrellus nathusii, Pipistrellus pygmaeus, Pipistrellus pipistrellus, and Vespertilio murinus.
View Article and Find Full Text PDFCellular sorting and pattern formation are crucial for many biological processes such as development, tissue regeneration, and cancer progression. Prominent physical driving forces for cellular sorting are differential adhesion and contractility. Here, we studied the segregation of epithelial cocultures containing highly contractile, ZO1/2-depleted MDCKII cells (dKD) and their wild-type (WT) counterparts using multiple quantitative, high-throughput methods to monitor their dynamical and mechanical properties.
View Article and Find Full Text PDFViscoelastic properties of epithelial cells subject to shape changes were monitored by indentation-retraction/relaxation experiments. MDCK II cells cultured on extensible polydimethylsiloxane substrates were laterally stretched and, in response, displayed increased cortex contractility and loss of excess surface area. Thereby, the cells preserve their fluidity but inevitably become stiffer.
View Article and Find Full Text PDFAtomic force microscopy is used to study the viscoelastic properties of epithelial cells in three different states. Force relaxation data are acquired from cells in suspension, adhered but single cells, and polarized cells in a confluent monolayer using different indenter geometries comprising flat bars, pyramidal cones, and spheres. We found that the fluidity of cells increased substantially from the suspended to the adherent state.
View Article and Find Full Text PDFTight junctions (TJs) are essential components of epithelial tissues connecting neighboring cells to provide protective barriers. While their general function to seal compartments is well understood, their role in collective cell migration is largely unexplored. Here, the importance of the TJ zonula occludens (ZO) proteins ZO1 and ZO2 for epithelial migration is investigated employing video microscopy in conjunction with velocimetry, segmentation, cell tracking, and atomic force microscopy/spectroscopy.
View Article and Find Full Text PDF