Publications by authors named "Jannetta S Steyn"

Article Synopsis
  • The study investigates the relationship between mitochondrial DNA (mtDNA) variation and neurocognitive impairment in people with HIV (PWH), using MutPred scores to predict variant pathogenicity.
  • Researchers analyzed data from 744 PWH in the CHARTER study, finding that those with potentially harmful mtDNA variants were less likely to experience motor impairment.
  • The results suggest that these deleterious mtDNA variants may actually protect against motor function decline, indicating complex and not yet understood mechanisms at play.
View Article and Find Full Text PDF

Several mitochondrial DNA (mtDNA) haplogroup association studies have suggested that common mtDNA variants are associated with multifactorial diseases, including Alzheimer's disease (AD). However, such studies have also produced conflicting results. A new mtDNA association model, the 'variant load model' (VLM), has been applied to multiple disease phenotypes.

View Article and Find Full Text PDF

The scarcity of embryonic/foetal material as a resource for direct study means that there is still limited understanding of human retina development. Here, we present an integrated transcriptome analysis combined with immunohistochemistry in human eye and retinal samples from 4 to 19 post-conception weeks. This analysis reveals three developmental windows with specific gene expression patterns that informed the sequential emergence of retinal cell types and enabled identification of stage-specific cellular and biological processes, and transcriptional regulators.

View Article and Find Full Text PDF

Male germ cells of all placental mammals express an ancient nuclear RNA binding protein of unknown function called RBMXL2. Here we find that deletion of the retrogene encoding RBMXL2 blocks spermatogenesis. Transcriptome analyses of age-matched deletion mice show that RBMXL2 controls splicing patterns during meiosis.

View Article and Find Full Text PDF

Mitochondrial DNA (mtDNA) mutations are well recognized as an important cause of inherited disease. Diseases caused by mtDNA mutations exhibit a high degree of clinical heterogeneity with a complex genotype-phenotype relationship, with many such mutations exhibiting incomplete penetrance. There is evidence that the spectrum of mutations causing mitochondrial disease might differ between different mitochondrial lineages (haplogroups) seen in different global populations.

View Article and Find Full Text PDF

The temporal relationship between the activities of neurons in biological neural systems is critically important for the correct delivery of the functionality of these systems. Fine measurement of temporal relationships of neural activities using micro-electrodes is possible but this approach is very limited due to spatial constraints in the context of physiologically valid settings of neural systems. Optical imaging with voltage-sensitive dyes or calcium dyes can provide data about the activity patterns of many neurons in physiologically valid settings, but the data is relatively noisy.

View Article and Find Full Text PDF

In platelets, splicing and translation occur in the absence of a nucleus. However, the integrity and stability of mRNAs derived from megakaryocyte progenitor cells remain poorly quantified on a transcriptome-wide level. As circular RNAs (circRNAs) are resistant to degradation by exonucleases, their abundance relative to linear RNAs can be used as a surrogate marker for mRNA stability in the absence of transcription.

View Article and Find Full Text PDF