Aquaculture is expected to play a vital role in solving the challenge of sustainably providing the growing world population with healthy and nutritious food. Pathogen outbreaks are a major risk for the sector, so early detection and a timely response are crucial. This can be enabled by monitoring the pathogen levels in aquaculture facilities.
View Article and Find Full Text PDFThe Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic has once more emphasized the urgent need for accurate and fast point-of-care (POC) diagnostics for outbreak control and prevention. The main challenge in the development of POC in vitro diagnostics (IVD) is to combine a short time to result with a high sensitivity, and to keep the testing cost-effective. In this respect, sensors based on photonic integrated circuits (PICs) may offer advantages as they have features such as a high analytical sensitivity, capability for multiplexing, ease of miniaturization, and the potential for high-volume manufacturing.
View Article and Find Full Text PDFSpatioselective functionalization of silicon nanowires was achieved without using a masking material. The designed process combines metal-assisted chemical etching (MACE) to fabricate silicon nanowires and hydrosilylation to form molecular monolayers. After MACE, a monolayer was formed on the exposed nanowire surfaces.
View Article and Find Full Text PDFSilicon nanowire chips can function as sensors for cancer DNA detection, whereby selective functionalization of the Si sensing areas over the surrounding silicon oxide would prevent loss of analyte and thus increase the sensitivity. The thermal hydrosilylation of unsaturated carbon-carbon bonds onto H-terminated Si has been studied here to selectively functionalize the Si nanowires with a monolayer of 1,8-nonadiyne. The silicon oxide areas, however, appeared to be functionalized as well.
View Article and Find Full Text PDFFunctionalization of silicon-based sensing devices with self-assembled receptor monolayers offers flexibility and specificity towards the requested analyte as well as the possibility of sensor reuse. As electrical sensor performance is determined by electron transfer, we functionalized H-terminated silicon substrates with β-cyclodextrin (β-CD) molecules to investigate the electronic coupling between these host monolayers and the substrate. A trivalent (one ferrocene and two adamantyl moieties), redox-active guest was bound to the β-CD surface with a coverage of about 10 mol/cm and an overall binding constant of 1.
View Article and Find Full Text PDFControlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source.
View Article and Find Full Text PDFSilicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface.
View Article and Find Full Text PDFSelf-assembly to create molecular and nanostructures is typically performed at the thermodynamic minimum. To achieve dynamic functionalities, such as adaptability, internal feedback, and self-replication, there is a growing focus on out-of-equilibrium systems. This report presents the dynamic self-assembly of an artificial host-guest system at an interface, under control by a dissipative electrochemical process using (electrical) energy, resulting in an out-of-equilibrium system exhibiting a supramolecular surface gradient.
View Article and Find Full Text PDF