Publications by authors named "Janne T Koivisto"

Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) hold great potential in the cardiovascular field for human disease modeling, drug development, and regenerative medicine. However, multiple hurdles still exist for the effective utilization of hiPSC-CMs as a human-based experimental platform that can be an alternative to the current animal models. To further expand their potential as a research tool and bridge the translational gap, we have generated a cardiac-specific hiPSC reporter line that differentiates into fluorescent CMs using CRISPR-Cas9 genome editing technology.

View Article and Find Full Text PDF

Recently, the hydrogel-forming polysaccharide gellan gum (GG) has gained popularity as a versatile biomaterial for tissue engineering purposes. Here, we examine the modification strategies suitable for GG to overcome processing-related limitations. We emphasize the thorough assessment of the viscoelastic and mechanical properties of both precursor solutions and final hydrogels.

View Article and Find Full Text PDF

Assessing cell morphology and function, as well as biomaterial performance in cell cultures, is one of the key challenges in cell biology and tissue engineering (TE) research. In TE, there is an urgent need for methods to image actual three-dimensional (3D) cell cultures and access the living cells. This is difficult using established optical microscopy techniques such as wide-field or confocal microscopy.

View Article and Find Full Text PDF

This article proposes the coupling of the recombinant protein avidin to the polysaccharide gellan gum to create a modular hydrogel substrate for 3D cell culture and tissue engineering. Avidin is capable of binding biotin, and thus biotinylated compounds can be tethered to the polymer network to improve cell response. The avidin is successfully conjugated to gellan gum and remains functional as shown with fluorescence titration and electrophoresis (SDS-PAGE).

View Article and Find Full Text PDF

There is a clear need for novel in vitro models, especially for neuronal applications. Development of in vitro models is a multiparameter task consisting of cell-, biomaterial-, and environment-related parameters. Here, three different human origin neuronal cell sources are studied and cultured in various hydrogel 3D scaffolds.

View Article and Find Full Text PDF

Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes.

View Article and Find Full Text PDF

To promote the transition of cell cultures from 2D to 3D, hydrogels are needed to biomimic the extracellular matrix (ECM). One potential material for this purpose is gellan gum (GG), a biocompatible and mechanically tunable hydrogel. However, GG alone does not provide attachment sites for cells to thrive in 3D.

View Article and Find Full Text PDF

Background: Due to unmet need for bone augmentation, our aim was to promote osteogenic differentiation of human adipose stem cells (hASCs) encapsulated in gellan gum (GG) or collagen type I (COL) hydrogels with bioactive glass (experimental glass 2-06 of composition [wt-%]: NaO 12.1, KO 14.0, CaO 19.

View Article and Find Full Text PDF
Article Synopsis
  • Biopolymers like chitosan show promise for creating biocompatible hydrogels, but their application has been limited due to low water solubility at physiological pH.
  • A water-soluble version of chitosan was developed by grafting it with l-glutamic acid, making it zwitterion-tethered, and resulting in improved solubility while forming hydrogels that gell within 60 seconds.
  • These hydrogels demonstrate adjustable mechanical properties, biodegradability, and good cell viability, suggesting they could be valuable for injectable biomaterial applications in the future.
View Article and Find Full Text PDF

Gellan gum (GG) has been proposed for use in tissue engineering (TE) due to its structural and functional similarities with alginate. The most traditional crosslinking methods of GG, ionical and photocrosslinking, have downsides such as loss of stability or phototoxicity, which can limit their use in certain applications. In this study, an alternative hydrazone crosslinking method is introduced.

View Article and Find Full Text PDF

Neural tissue engineering and three-dimensional in vitro tissue modeling require the development of biomaterials that take into account the specified requirements of human neural cells and tissue. In this study, an alternative method of producing biomimetic hydrogels based on gellan gum (GG) was developed by replacing traditional crosslinking methods with the bioamines spermidine and spermine. These bioamines were proven to function as crosslinkers for GG hydrogel at +37 °C, allowing for the encapsulation of human neurons.

View Article and Find Full Text PDF

The microstructure and permeability are crucial factors for the development of hydrogels for tissue engineering, since they influence cell nutrition, penetration, and proliferation. The currently available imaging methods able to characterize hydrogels have many limitations. They often require sample drying and other destructive processing, which can change hydrogel structure, or they have limited imaging penetration depth.

View Article and Find Full Text PDF