Publications by authors named "Janne T Hirvi"

Hydrolysis of trimethylaluminum (TMA) leads to the formation of methylaluminoxanes (MAO) of general formula (MeAlO)n (AlMe3)m. The thermodynamically favored pathway of MAO formation is followed up to n=8, showing the major impact of associated TMA on the structural characteristics of the MAOs. The MAOs bind up to five TMA molecules, thereby inducing transition from cages into rings and sheets.

View Article and Find Full Text PDF

The effect of bulk BaO promoter on CO oxidation activity of palladium oxide phase was studied by density functional calculations. A series of BaO(100) supported Pd(x)O(y) thin layer models were constructed, and energy profiles for CO oxidation on the films were calculated and compared with corresponding profiles for the most stable PdO bulk surfaces PdO(100) and PdO(101). The most stable of the thin films typically exhibit the same PdO(100) and PdO(101) surface planes; the PdO(100) dominates already with double layer thickness.

View Article and Find Full Text PDF

Density functional calculations were performed in order to investigate CO oxidation on two of the most stable bulk PdO surfaces. The most stable PdO(100) surface, with oxygen excess, is inert against CO adsorption, whereas strong adsorption on the stoichiometric PdO(101) surface leads to favorable oxidation via the Langmuir-Hinshelwood mechanism. The reaction with a surface oxygen atom has an activation energy of 0.

View Article and Find Full Text PDF

Molecular dynamics simulations were used to study the wetting of nanogrooved PE and PVC polymer surfaces. The contact angles, equilibrium states, and equilibrium shapes of two nanosized water droplets were analyzed on surfaces with 1D-arranged periodic roughness of various dimensions. The composite solid-liquid contact, which is preferred in practical applications and in which a droplet rests on top of the surface asperities, was observed on the roughest PE surfaces, whereas water filled the similar but slightly deeper grooves on PVC surfaces.

View Article and Find Full Text PDF

Molecular dynamics simulations were used to study the effect of periodic roughness of PE and PVC polymer surfaces on the hydrophobicity. Pillars of different lateral dimensions and heights were derived from flat crystalline surfaces, and the results of nanoscale simulations on the structured surfaces were compared with theoretical predictions of the Wenzel and Cassie equations. Hydrophobicity increased on all rough surfaces, but the increase was greater on the structured PE surfaces because of the larger water contact angle on the flat PE surface than the corresponding PVC surface.

View Article and Find Full Text PDF

Molecular dynamics simulations were used to study the wetting of polymer surfaces with water. Contact angles of water droplets on crystalline and two amorphous polyethylene (PE) and poly(vinyl chloride) (PVC) surfaces were extracted from atomistic simulations. Crystalline surfaces were produced by duplicating the unit cell of an experimental crystal structure, and amorphous surfaces by pressing the bulk polymer step by step at elevated temperature between two repulsive grid surfaces to a target density.

View Article and Find Full Text PDF