Publications by authors named "Janne Kulpakko"

Most of the annual 10 million cancer-related deaths are caused by metastatic disease. Survival rates for cancer are strongly dependent on the type of cancer and its stage at detection. Early detection remains a challenge due to the lack of reliable biomarkers and cost-efficient screening methods.

View Article and Find Full Text PDF

Biosensor research is a swiftly growing field for developing rapid and precise analytical devices for biomedical, pharmaceutical, and industrial use and beyond. Herein, we propose a phage-based biosensor method to develop a sensitive and specific system for biomedical detection. Our method is based on in vitro selected phages and their interaction with the targeted analytes as well as on optical properties that change according to the concentration of the model analyte.

View Article and Find Full Text PDF

Assessment of risk for a given disease and the diagnosis of diseases is often based on assays detecting biomarkers. Antibody-based biomarker-assays for diseases such as prostate cancer are often ambiguous and biomarker proteins are frequently also elevated for reasons that are unspecific. We have opted to use luminescence modulating phages for the analysis of known acute inflammatory response biomarker CRP (C-reactive protein) and biomarkers of prostate cancer in urine samples.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are a common problem worldwide. The most prevalent causative pathogen of UTI is Escherichia coli, focus of this study. The current golden standard for detecting UTI is bacterial culture, creating a major workload for hospital laboratories - cost-effective and rapid mass screening of patient samples is needed.

View Article and Find Full Text PDF

Fast and simple detection of pathogens is of utmost importance in health care and the food industry. In this article, a novel technology for the detection of pathogenic bacteria is presented. The technology uses lytic-specific bacteriophages and a nonspecific interaction of cellular components with a luminescent lanthanide chelate.

View Article and Find Full Text PDF

Cancer-testis antigens (CTAs) are expressed mainly in various cancer tissues and in testis or placenta. Because of their restricted expression pattern, the CTAs can be potentially used for vaccine development and diagnostic applications. CTA CT16 has been found to be expressed in lung and renal cancers as well as in melanomas.

View Article and Find Full Text PDF