Publications by authors named "Janne Kotiaho"

Ecosystem restoration will increase following the ambitious international targets, which calls for a rigorous evaluation of restoration effectiveness. Here, we present results from a long-term before-after control-impact experiment on the restoration of forestry-drained boreal peatland ecosystems. Our data comprise 151 sites, representing six ecosystem types.

View Article and Find Full Text PDF

The rates of ecosystem degradation and biodiversity loss are alarming and current conservation efforts are not sufficient to stop them. The need for new tools is urgent. One approach is biodiversity offsetting: a developer causing habitat degradation provides an improvement in biodiversity so that the lost ecological value is compensated for.

View Article and Find Full Text PDF

Private land often encompasses biodiversity features of high conservation value, but its protection is not straightforward. Commonly, landowners' perspectives are rightfully allowed to influence conservation actions. This unlikely comes without consequences on biodiversity or other aspects such as economic considerations, but these consequences are rarely quantitatively considered in decision-making.

View Article and Find Full Text PDF

Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates.

View Article and Find Full Text PDF

Landowners can intentionally impair biodiversity values occurring on their land to pre-empt biodiversity protection. This often leads to significant negative effects on biodiversity. We studied whether landowners in Finland engaged in pre-emptive loggings after they were notified that their wooded mires are candidate sites for a mire protection program.

View Article and Find Full Text PDF

Biodiversity offsetting is the practice of using conservation actions, such as habitat restoration, management, or protection, to compensate for ecological losses caused by development activity, including construction projects. The typical goal of offsetting is no net loss (NNL), which means that all ecological losses are compensated for by commensurate offset gains. We focused on a conceptual and methodological exploration of net positive impact (NPI), an ambitious goal that implies commitment beyond NNL and that has recently received increasing attention from big business and environmental nongovernmental organizations.

View Article and Find Full Text PDF

The frequently discussed gap between conservation science and practice is manifest in the gap between spatial conservation prioritization plans and their implementation. We analyzed the research-implementation gap of one zoning case by comparing results of a spatial prioritization analysis aimed at avoiding ecological impact of peat mining in a regional zoning process with the final zoning plan. We examined the relatively complex planning process to determine the gaps among research, zoning, and decision making.

View Article and Find Full Text PDF

Ecological restoration is expected to reverse the loss of biodiversity and ecosystem services. Due to the low number of well-replicated field studies, the extent to which restoration recovers plant communities, and the factors underlying possible shortcomings, are not well understood even in medium term. We compared the plant community composition of 38 sites comprising pristine, forestry-drained, and 5 or 10 years ago restored peatlands in southern Finland, with special interest in understanding spatial variation within studied sites, as well as the development of the numbers and the abundances of target species.

View Article and Find Full Text PDF

Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts.

View Article and Find Full Text PDF

Degradation of ecosystems is a great concern on the maintenance of biodiversity and ecosystem services. Ecological restoration fights degradation aiming at the recovery of ecosystem functions such as carbon (C) sequestration and ecosystem structures like plant communities responsible for the C sequestration function. We selected 38 pristine, drained and restored boreal peatland sites in Finland and asked i) what is the long-term effect of drainage on the peatland surface layer C storage, ii) can restoration recover ecosystem functioning (surface layer growth) and structure (plant community composition) and iii) is the recovery of the original structure needed for the recovery of ecosystem functions? We found that drainage had resulted in a substantial net loss of C from surface layer of drained sites.

View Article and Find Full Text PDF

Background: Restoration aims at reversing the trend of habitat degradation, the major threat to biodiversity. In Finland, more than half of the original peatland area has been drained, and during recent years, restoration of some of the drained peatlands has been accomplished. Short-term effects of the restoration on peatland hydrology, chemistry and vegetation are promising but little is known about how other species groups apart from vascular plants and bryophytes respond to restoration efforts.

View Article and Find Full Text PDF

Understanding the effects of inbreeding and genetic drift within populations and hybridization between genetically differentiated populations is important for many basic and applied questions in ecology and evolutionary biology. The magnitudes and even the directions of these effects can be influenced by various factors, especially by the current and historical population size (i.e.

View Article and Find Full Text PDF

Spatial genetic structure (SGS) is largely determined by colonization history, landscape and ecological characteristics of the species. Therefore, sympatric and ecologically similar species are expected to exhibit similar SGSs, potentially enabling prediction of the SGS of one species from that of another. On the other hand, due to interspecific interactions, ecologically similar species could have different SGSs.

View Article and Find Full Text PDF

Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer 'lifeboats' to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking.

View Article and Find Full Text PDF

Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on-the-ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion.

View Article and Find Full Text PDF

Background: Conservation of biological diversity and economical utilization of natural resources form an almost inevitable confrontation between the two. In practice, however, a balance between the two ought to be found, and in managed boreal forests, preservation of woodland key habitats is increasingly used strategy to safeguard biological diversity. According to the Finnish Forests Act, certain Forest Act habitat (FAH) types must be safeguarded, provided they are clearly distinguishable from their surroundings.

View Article and Find Full Text PDF

The negative fitness consequences of close inbreeding are widely recognized, but predicting the long-term effects of inbreeding and genetic drift due to limited population size is not straightforward. As the frequency and homozygosity of recessive deleterious alleles increase, selection can remove (purge) them from a population, reducing the genetic load. At the same time, small population size relaxes selection against mildly harmful mutations, which may lead to accumulation of genetic load.

View Article and Find Full Text PDF

In 1992, David Houle showed that measures of additive genetic variation standardized by the trait mean, CVA (the coefficient of additive genetic variation) and its square (IA), are suitable measures of evolvability. CVA has been used widely to compare patterns of genetic variation. However, the use of CVAs for comparative purposes relies critically on the correct calculation of this parameter.

View Article and Find Full Text PDF

There is a growing amount of empirical evidence that premating reproductive isolation of two closely related species can be reinforced by natural selection arising from avoidance of maladaptive hybridization. However, as an alternative for this popular reinforcement theory, it has been suggested that learning to prefer conspecifics or to discriminate heterospecifics could cause a similar pattern of reinforced premating isolation, but this possibility is much less studied. Here, we report results of a field experiment in which we examined (i) whether allopatric Calopteryx virgo damselfly males that have not encountered heterospecific females of the congener C.

View Article and Find Full Text PDF