Publications by authors named "Janne K Adolf"

First-order autoregressive models are popular to assess the temporal dynamics of a univariate process. Researchers often extend these models to include time-varying covariates, such as contextual factors, to investigate how they moderate processes' dynamics. We demonstrate that doing so has implications for how well one can estimate the autoregressive and covariate effects, as serial dependence in the variables can imply predictor collinearity.

View Article and Find Full Text PDF

Autoregressive and vector autoregressive models are a driving force in current psychological research. In affect research they are, for instance, frequently used to formalize affective processes and estimate affective dynamics. Discrete-time model variants are most commonly used, but continuous-time formulations are gaining popularity, because they can handle data from longitudinal studies in which the sampling rate varies within the study period, and yield results that can be compared across data sets from studies with different sampling rates.

View Article and Find Full Text PDF

Time series analysis of intensive longitudinal data provides the psychological literature with a powerful tool for assessing how psychological processes evolve through time. Recent applications in the field of psychosomatic research have provided insights into the dynamical nature of the relationship between somatic symptoms, physiological measures, and emotional states. These promising results highlight the intrinsic value of employing time series analysis, although application comes with some important challenges.

View Article and Find Full Text PDF

Much of recent affect research relies on intensive longitudinal studies to assess daily emotional experiences. The resulting data are analyzed with dynamic models to capture regulatory processes involved in emotional functioning. Daily contexts, however, are commonly ignored.

View Article and Find Full Text PDF