The Environment & Oil Spill Response tool (EOS), supports oil spill response planning and decision making. This tool is developed on a research basis, and is an index based, generic and open-source analytic tool, which environmentally can optimise the choice of oil spill response methods for a given spill situation and for a given sea area with respect to environment and nature. The tool is not linked to a particular oil spill simulation model, although it is recommended using oil spill simulation models to have detailed data available for the analysis.
View Article and Find Full Text PDFIn situ burning of marine oil spills reduces the total amount of oil in the environment, but a negative side effect may be the generation of environmentally hazardous polycyclic aromatic hydrocarbons (PAHs) that may pose a risk for bioaccumulation, particularly in organisms having a high lipid content. In this study uptake of PAHs from oil and burn residue were examined in the high arctic copepod Calanus hyperboreus. A major part of the low ring number petrogenic PAHs in the oil was removed during burning and relative higher concentrations of pyrogenic high ring number PAHs was found in the burn residue.
View Article and Find Full Text PDFChemical dispersion is an oil spill response strategy where dispersants are sprayed onto the oil slick to enhance oil dispersion into the water. However, accidental application could expose seabirds to dispersants, thereby negatively affecting their plumage. To understand the possible impacts on seabirds, feathers from common eider (Somateria mollissima) and thick-billed murre (Uria lomvia) were exposed to different dosages of the dispersant Dasic Slickgone NS.
View Article and Find Full Text PDFIn-situ burning (ISB) has been an oil combat technique studied since the 1950s. However, burning of the oil on the sea surface along the coastline, coastline ISB (cISB), is novel and was tested for the first time in the Arctic along a rocky coast in the summer 2017. A light crude oil was burned and effects of the cISB operation on the littoral zone communities investigated.
View Article and Find Full Text PDFIn situ burning (ISB) is discussed to be one of the most suitable response strategies to combat oil spills in extreme conditions. After burning, a highly viscous and sticky residue is left and may over time pose a risk of exposing aquatic biota to toxic oil compounds. Scientific information about the impact of burn residues on the environment is scarce.
View Article and Find Full Text PDFDue to increased sea transport and offshore gas and oil exploration, the Arctic is facing an unprecedented risk of marine oil spills. Although beached oil spills can lead to acute and chronic impacts on intertidal ecosystems, the effects of oil spills on macro-algae in Arctic ecosystems is lacking. Here, we assessed the effect and response of the tidal macro-algae Fucus distichus to oiling, i.
View Article and Find Full Text PDFNew economic developments in the Arctic, such as shipping and oil exploitation, bring along unprecedented risks of marine oil spills. Microorganisms have played a central role in degrading and reducing the impact of the spilled oil during past oil disasters. However, in the Arctic, and in particular in its pristine areas, the self-cleaning capacity and biodegradation potential of the natural microbial communities have yet to be uncovered.
View Article and Find Full Text PDFThe average herded slick thickness, surface distribution and burning efficiency of a light crude oil were studied in ice-infested water to determine the effectiveness of a chemical herder in facilitating the in-situ burning of oil. Experiments were performed in a small scale (1.0m) and an intermediate scale (19m) setup with open water and 3/10, 5/10 and 7/10 brash ice coverages.
View Article and Find Full Text PDFIt is well known, that in case of oil spill, seabirds are among the groups of animals most vulnerable. Even small amounts of oil can have lethal effects by destroying the waterproofing of their plumage, leading to loss of insulation and buoyancy. In the Arctic these impacts are intensified.
View Article and Find Full Text PDFA 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Individual and synergistic effects of biostimulation were also tested, in parallel.
View Article and Find Full Text PDFTroll B crude oil was weathered under Arctic conditions with different ice coverage: open water, 50% ice and 90% ice. Samples (100 mL) were taken during the experiment and tested for ignitability in a burning cell. From each burning a residue sample was taken for analysis.
View Article and Find Full Text PDFThis paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF's laboratories in Trondheim, field research station on Svalbard and in broken ice (70-90% ice cover) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell.
View Article and Find Full Text PDFThis paper presents for the first time laboratory results demonstrating electrodialytic removal of Cd from wastewater sludge, which is a method originally developed for soil remediation. During the remediation a stirred suspension of wastewater sludge was exposed to an electric dc field. The liquid/solid (ml/g fresh sludge) ratio was between 1.
View Article and Find Full Text PDF