Publications by authors named "Janne Adolf"

Nowadays research into affect frequently employs intensive longitudinal data to assess fluctuations in daily emotional experiences. The resulting data are often analyzed with moderated autoregressive models to capture the influences of contextual events on the emotion dynamics. The presence of noise (e.

View Article and Find Full Text PDF

First-order autoregressive models are popular to assess the temporal dynamics of a univariate process. Researchers often extend these models to include time-varying covariates, such as contextual factors, to investigate how they moderate processes' dynamics. We demonstrate that doing so has implications for how well one can estimate the autoregressive and covariate effects, as serial dependence in the variables can imply predictor collinearity.

View Article and Find Full Text PDF

In many scientific disciplines, researchers are interested in discovering when complex systems such as stock markets, the weather or the human body display abrupt changes. Essentially, this often comes down to detecting whether a multivariate time series contains abrupt changes in one or more statistics, such as means, variances or pairwise correlations. To assist researchers in this endeavor, this paper presents the package for performing kernel change point (KCP) detection on user-selected running statistics of multivariate time series.

View Article and Find Full Text PDF

Reduced moment-to-moment blood oxygen level-dependent (BOLD) signal variability has been consistently linked to advanced age and poorer cognitive performance, showing potential as a functional marker of brain aging. To date, however, this promise has rested exclusively on cross-sectional comparisons. In a sample of 74 healthy adults, we provide the first longitudinal evidence linking individual differences in BOLD variability, age, and performance across multiple cognitive domains over an average period of 2.

View Article and Find Full Text PDF

Autoregressive and vector autoregressive models are a driving force in current psychological research. In affect research they are, for instance, frequently used to formalize affective processes and estimate affective dynamics. Discrete-time model variants are most commonly used, but continuous-time formulations are gaining popularity, because they can handle data from longitudinal studies in which the sampling rate varies within the study period, and yield results that can be compared across data sets from studies with different sampling rates.

View Article and Find Full Text PDF

Time series analysis of intensive longitudinal data provides the psychological literature with a powerful tool for assessing how psychological processes evolve through time. Recent applications in the field of psychosomatic research have provided insights into the dynamical nature of the relationship between somatic symptoms, physiological measures, and emotional states. These promising results highlight the intrinsic value of employing time series analysis, although application comes with some important challenges.

View Article and Find Full Text PDF

Long-lived simultaneous changes in the autodependency of dynamic system variables characterize crucial events as epileptic seizures and volcanic eruptions and are expected to precede psychiatric conditions. To understand and predict such phenomena, methods are needed that detect such changes in multivariate time series. We put forward two methods: First, we propose KCP-AR, a novel adaptation of the general-purpose KCP (Kernel Change Point) method.

View Article and Find Full Text PDF

Much of recent affect research relies on intensive longitudinal studies to assess daily emotional experiences. The resulting data are analyzed with dynamic models to capture regulatory processes involved in emotional functioning. Daily contexts, however, are commonly ignored.

View Article and Find Full Text PDF

We address the question of equivalence between modeling results obtained on intra-individual and inter-individual levels of psychometric analysis. Our focus is on the concept of measurement invariance and the role it may play in this context. We discuss this in general against the background of the latent variable paradigm, complemented by an operational demonstration in terms of a linear state-space model, i.

View Article and Find Full Text PDF