Non-small cell lung cancer (NSCLC) collective invasion is supported by cooperativity of proliferative (follower) and invasive (leader) cells. H1299-isolated follower cells exhibit higher Yes-associated protein (YAP) expression, while leader cells were found to express elevated transcriptional coactivator with PDZ-binding motif (TAZ/WWTR1) expression. Suppressing TAZ (not YAP) in leader cells reduced invasion.
View Article and Find Full Text PDFPhenotypic heterogeneity poses a significant hurdle for cancer treatment but is under-characterized in the context of tumor invasion. Amidst the range of phenotypic heterogeneity across solid tumor types, collectively invading cells and single cells have been extensively characterized as independent modes of invasion, but their intercellular interactions have rarely been explored. Here, we isolated collectively invading cells and single cells from the heterogeneous 4T1 cell line and observed extensive transcriptional and epigenetic diversity across these subpopulations.
View Article and Find Full Text PDFTissue stem-progenitor cell frequency has been implicated in tumor risk and progression, but tissue-specific factors linking these associations remain ill-defined. We observed that stiff breast tissue from women with high mammographic density, who exhibit increased lifetime risk for breast cancer, associates with abundant stem-progenitor epithelial cells. Using genetically engineered mouse models of elevated integrin mechanosignaling and collagen density, syngeneic manipulations, and spheroid models, we determined that a stiff matrix and high mechanosignaling increase mammary epithelial stem-progenitor cell frequency and enhance tumor initiation in vivo.
View Article and Find Full Text PDFNumerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity.
View Article and Find Full Text PDFNumerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity.
View Article and Find Full Text PDFTumor heterogeneity drives disease progression, treatment resistance, and patient relapse, yet remains largely underexplored in invasion and metastasis. Here, we investigated heterogeneity within collective cancer invasion by integrating DNA methylation and gene expression analysis in rare purified lung cancer leader and follower cells. Our results showed global DNA methylation rewiring in leader cells and revealed the filopodial motor as a critical gene at the intersection of epigenetic heterogeneity and three-dimensional (3D) collective invasion.
View Article and Find Full Text PDFWomen with dense breasts have an increased lifetime risk of malignancy that has been attributed to a higher epithelial density. Quantitative proteomics, collagen analysis, and mechanical measurements in normal tissue revealed that stroma in the high-density breast contains more oriented, fibrillar collagen that is stiffer and correlates with higher epithelial cell density. microRNA (miR) profiling of breast tissue identified miR-203 as a matrix stiffness-repressed transcript that is downregulated by collagen density and reduced in the breast epithelium of women with high mammographic density.
View Article and Find Full Text PDFAn integrated, parallel-plate microfluidic device is engineered to interrogate and fractionate cells based on their adhesivity to a substrate surface functionalized with adhesive ligand in a tightly controlled flow environment to elucidate associated cell-intrinsic pathways. Wall shear stress levels and endothelial presentation of E-selectin are modeled after the inflamed vasculature microenvironment in order to simulate in vitro conditions under which in vivo hematogenous metastasis occurs. Based on elution time from the flow channel, the collection of separate fractions of cells-noninteracting and interacting-at high yields and viabilities enables multiple postperfusion analyses, including flow cytometry, in vivo metastasis modeling, and transcriptomic analysis.
View Article and Find Full Text PDFFront Cell Dev Biol
February 2018
The tumor microenvironment is a dynamic landscape in which the physical and mechanical properties evolve dramatically throughout cancer progression. These changes are driven by enhanced tumor cell contractility and expansion of the growing tumor mass, as well as through alterations to the material properties of the surrounding extracellular matrix (ECM). Consequently, tumor cells are exposed to a number of different mechanical inputs including cell-cell and cell-ECM tension, compression stress, interstitial fluid pressure and shear stress.
View Article and Find Full Text PDFInterstitial fluid pressure (IFP) presents a barrier to drug uptake in solid tumors, including the aggressive primary brain tumor glioblastoma (GBM). It remains unclear how fluid dynamics impacts tumor progression and can be targeted therapeutically. To address this issue, a novel telemetry-based approach was developed to measure changes in IFP during progression of GBM xenografts.
View Article and Find Full Text PDFIncreased overall survival for patients with glioma brain tumours is associated with mutations in the metabolic regulator isocitrate dehydrogenase 1 (IDH1). Gliomas develop within a mechanically challenged microenvironment that is characterized by a dense extracellular matrix (ECM) that compromises vascular integrity to induce hypoxia and activate HIF1α. We found that glioma aggression and patient prognosis correlate with HIF1α levels and the stiffness of a tenascin C (TNC)-enriched ECM.
View Article and Find Full Text PDFFibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension.
View Article and Find Full Text PDFBreast tumor progression is accompanied by changes in the surrounding extracellular matrix (ECM) that increase stiffness of the microenvironment. Mammary epithelial cells engage regulatory pathways that permit dynamic responses to mechanical cues from the ECM. Here, we identify a SLIT2/ROBO1 signaling circuit as a key regulatory mechanism by which cells sense and respond to ECM stiffness to preserve tensional homeostasis.
View Article and Find Full Text PDFThe extracellular matrix regulates tissue development and homeostasis, and its dysregulation contributes to neoplastic progression. The extracellular matrix serves not only as the scaffold upon which tissues are organized but provides critical biochemical and biomechanical cues that direct cell growth, survival, migration and differentiation and modulate vascular development and immune function. Thus, while genetic modifications in tumor cells undoubtedly initiate and drive malignancy, cancer progresses within a dynamically evolving extracellular matrix that modulates virtually every behavioral facet of the tumor cells and cancer-associated stromal cells.
View Article and Find Full Text PDFThe biochemical and biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. The molecules that are associated with the ECM of each tissue, including collagens, proteoglycans, laminins and fibronectin, and the manner in which they are assembled determine the structure and the organization of the resultant ECM. The product is a specific ECM signature that is comprised of unique compositional and topographical features that both reflect and facilitate the functional requirements of the tissue.
View Article and Find Full Text PDFMalignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function.
View Article and Find Full Text PDFTissue mechanics regulate development and homeostasis and are consistently modified in tumor progression. Nevertheless, the fundamental molecular mechanisms through which altered mechanics regulate tissue behavior and the clinical relevance of these changes remain unclear. We demonstrate that increased matrix stiffness modulates microRNA expression to drive tumor progression through integrin activation of β-catenin and MYC.
View Article and Find Full Text PDFTrends Cell Biol
January 2011
Cancer cells exist in a constantly evolving tissue microenvironment of diverse cell types within a proteinaceous extracellular matrix. As tumors evolve, the physical forces within this complex microenvironment change, with pleiotropic effects on both cell- and tissue-level behaviors. Recent work suggests that these biomechanical factors direct tissue development and modulate tissue homeostasis, and, when altered, crucially influence tumor evolution.
View Article and Find Full Text PDFBreast cancer 1, early onset (BRCA1) expression is often reduced in sporadic breast tumors, even in the absence of BRCA1 genetic modifications, but the molecular basis for this is unknown. In this study, we identified homeobox A9 (HOXA9) as a gene frequently downregulated in human breast cancers and tumor cell lines and noted that reduced HOXA9 transcript levels associated with tumor aggression, metastasis, and patient mortality. Experiments revealed that loss of HOXA9 promoted mammary epithelial cell growth and survival and perturbed tissue morphogenesis.
View Article and Find Full Text PDFMesenchymal progenitors such as bone marrow stromal cells (BMSCs) are an attractive cell source for fibrocartilage tissue engineering, but the types or combinations of signals required to promote fibrochondrocyte-specific differentiation remain unclear. The present study investigated the influences of cyclic tensile loading on the chondrogenesis of BMSCs and the development of engineered fibrocartilage. Cyclic tensile displacements (10%, 1 Hz) were applied to BMSC-seeded fibrin constructs for short (24 h) or extended (1-2 weeks) periods using a custom loading system.
View Article and Find Full Text PDFThe overall objective of the present study was to investigate the mechanotransduction of bovine bone marrow stromal cells (BMSCs) through the interactions between transforming growth factor beta1 (TGF-beta1), dexamethasone, and dynamic compressive loading. Overall, the addition of TGF-beta1 increased cell viability, extracellular matrix (ECM) gene expression, matrix synthesis, and sulfated glycosaminoglycan content over basal construct medium. The addition of dexamethasone further enhanced extracellular matrix gene expression and protein synthesis.
View Article and Find Full Text PDF