Background: Sub-Saharan African countries utilize whole blood (WB) to treat severe anemia secondary to severe blood loss or malaria on an emergency basis. In many areas with high prevalence of transfusion-transmissible agents, blood safety measures are insufficient. Pathogen reduction technology applied to WB might considerably improve blood safety.
View Article and Find Full Text PDFPhotochem Photobiol
September 2015
Within the last decade new technologies have been developed and implemented which employ light, often in the presence of a photosensitizer, to inactivate pathogens that reside in human blood products for the purpose of transfusion. These pathogen reduction technologies attempt to find the proper balance between pathogen kill and cell quality. Each system utilizes various chemistries that not only impact which pathogens they can inactivate and how, but also how the treatments affect the plasma and cellular proteins and to what degree.
View Article and Find Full Text PDF7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) is a well-known marker of oxidative stress. We report a mechanistic analysis of several pathways by which 8-oxodG is converted to nucleotide triphosphates and incorporated into both DNA and RNA. Exposure of MCF-7 cells to [(14)C]8-oxodG combined with specific inhibitors of several nucleotide salvage enzymes followed with accelerator mass spectrometry provided precise quantitation of the resulting radiocarbon-labeled species.
View Article and Find Full Text PDFGrowing evidence suggests that oxidative damage to cells generates mutagenic 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), which may initiate diseases related to aging and carcinogenesis. Kinetic measurement of 8-oxodG metabolism and repair in cells has been hampered by poor assay sensitivity and by difficulty characterizing the flux of oxidized nucleotides through the relevant metabolic pathways. We report here the development of a sensitive and quantitative approach to characterizing the kinetics and metabolic sources of 8-oxodG in MCF-7 human breast cancer cells by accelerator mass spectrometry.
View Article and Find Full Text PDF