Publications by authors named "Jann Grovogui"

Defect chemistry is critical to designing high performance thermoelectric materials. In SnTe, the naturally large density of cation vacancies results in excessive hole doping and frustrates the ability to control the thermoelectric properties. Yet, recent work also associates the vacancies with suppressed sound velocities and low lattice thermal conductivity, underscoring the need to understand the interplay between alloying, vacancies, and the transport properties of SnTe.

View Article and Find Full Text PDF

Thermoelectric generators can convert heat directly into usable electric power but suffer from low efficiencies and high costs, which have hindered wide-scale applications. Accordingly, an important goal in the field of thermoelectricity is to develop new high performance materials that are composed of more earth-abundant elements. The best systems for midtemperature power generation rely on heavily doped PbTe, but the Te in these materials is scarce in the Earth's crust.

View Article and Find Full Text PDF

Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κ ) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt-centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations.

View Article and Find Full Text PDF

Thermoelectric devices directly convert heat into electrical energy and are highly desired for emerging applications in waste heat recovery. Currently, PbTe based compounds are the leading thermoelectric materials in the intermediate temperature regime (∼800 K); however, integration into commercial devices has been limited. This is largely because the performance of PbTe, which is maximized ∼900 K, is too low over the temperatures of interest for most potential commercial applications (generally under 600 K).

View Article and Find Full Text PDF

Microstructural analysis by crystal orientation mapping of bulk functional materials is an essential and routine operation in the engineering of material properties. Far and away the most successfully employed technique, Electron Backscattered Diffraction (EBSD), provides high spatial resolution information at the cost of limited angular resolution and a distorted imaging condition. In this work, we demonstrate a stage-rocked electron channeling approach as a low-cost orientation mapping alternative to EBSD.

View Article and Find Full Text PDF