The ribosome, a ribonucleoprotein complex, performs the function of protein translation. While ribosomal RNA catalyzes polypeptide formation, several proteins assist the ribosome throughout the translation process. Studying the biochemical and kinetic properties of these proteins interacting with the ribosome is vital for elucidating their roles.
View Article and Find Full Text PDFAmylin or human islet amyloid polypeptide (hIAPP) is a small peptide co-secreted with insulin. Its peripheral aggregation on the lipid bilayer leads to fibril formation. The formation of hIAPP fibrils is hypothesized to rupture the membrane of β -cells, which culminates in β-cell death.
View Article and Find Full Text PDFMyoglobin is an essential transport protein of heart and muscle tissues that acts as a local oxygen reservoir and a marker in different diseased conditions. On the other hand, Vitamin B12 is a vital nutrient that helps synthesize red blood cells, DNA, and proteins. To understand the ability of vitamin B12 to bind to the excess of myoglobin produced in the body under certain conditions (muscle injuries, severe trauma, etc.
View Article and Find Full Text PDFProtein-ligand interactions play a significant role in all living organisms, thereby affecting the design and application of drugs and other biomaterials. The current study reports the binding of vitamin B12 to hemoglobin, employing optical spectroscopy and computational methods. It is observed that vitamin B12 quenched the intrinsic fluorescence of hemoglobin.
View Article and Find Full Text PDFJ Biomol Struct Dyn
March 2022
The β-Lactoglobulin (βLG) is a major whey protein that has the potential to bind various ligands; hence it is used as a model protein in protein-ligand interaction studies. Vitamin B12 is an essential nutrient for the human body, which helps in the synthesis of DNA, proteins, and the production of red blood cells. Binding interaction of vitamin B12 with βLG will help to understand the potency of βLG as a transporter for vitamin B12.
View Article and Find Full Text PDFJ Biomol Struct Dyn
February 2022
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel infectious disease that is in rapid growth. Several trials are going on worldwide to find a solution for this pandemic. The viral replication can be blocked by inhibiting the receptor-binding domain (RBD) of SARS-CoV-2 spike protein (SARS-CoV-2 RBD Spro) and the SARS-CoV-2 main protease (SARS-CoV-2 Mpro).
View Article and Find Full Text PDFIn the present work, biophysical insight into the binding interactions of the protein, hen egg white (HEW) lysozyme (Lyz) with an anticancer drug, 6-mercaptopurine (6-MP)' was investigated by using a combination of spectroscopic and computational tools. 6-MP, a synthetic analog of natural purines, is a well-known anticancer drug and antiviral agent that inhibits the synthesis of RNA, DNA, and proteins. Lysozyme is a single-chain protein that can combine with endogenous and exogenous substances to exert its antiviral, antibacterial, and antitumor effects.
View Article and Find Full Text PDFDopamine (DA) is a monoamine neurotransmitter of phenethylamine and catecholamine families, which is present in the central nervous system (CNS) and its periphery. Since DA is associated with several functions in the brain and body (motivational salience, reward, motor control, paracrine messenger, etc.), any imbalance in the DA level can trigger several neurodegenerative and other diseases.
View Article and Find Full Text PDFBiophysical insight into the binding interaction between the major whey protein, β-Lactoglobulin (βLG) and vitamin B12, was studied using different spectroscopic tools such as steady-state & time-resolved fluorescence spectroscopy, Circular Dichroism (CD) and Fluorescence Correlation Spectroscopy (FCS). The intrinsic fluorescence of βLG was quenched by vitamin B12. From the time-resolved fluorescence experiment, the nature of quenching was found to be static suggesting ground-state complex formation between βLG and vitamin B12, which was also supported by the excitation spectra.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
February 2020
Förster resonance energy transfer (FRET) is a powerful method for probing biomolecular conformations and dynamics in bulk as well as at a single-molecule level. FRET utilizes non-radiative mechanisms to transfer energy between fluorophores, donor and acceptor when placed in close proximity. The FRET efficiency has a strong distance dependence and serves as a direct read-out for molecular interaction.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2019
Hepatitis C virus (HCV) requires an essential host factor, human La protein, for its translation and replication activity. Earlier, it was demonstrated that a 24-mer synthetic peptide (LaR2C) encompassing residues 112 to 184 of the natural human La protein interacts with the HCV internal ribosome entry site (IRES) and inhibits translation. Interestingly, a shorter version of the same LaR2C peptide, LaR2C-N7, containing residues 174 to 180 (KYKETDL), with a unique β-turn secondary structure, is sufficient to inhibit IRES mediated translation of HCV.
View Article and Find Full Text PDF