Naturally occurring fragments of collagen type I alpha 1 chain (COL1A1) have been previously associated with chronic kidney disease (CKD), with some fragments showing positive and others negative associations. Using urinary peptidome data from healthy individuals (n = 1131) and CKD patients (n = 5585) this aspect was investigated in detail. Based on the hypothesis that many collagen peptides are derived not from the full, mature collagen molecule, but from (larger) collagen degradation products, relationships between COL1A1 peptides containing identical sequences were investigated, with the smaller (offspring) peptide being a possible degradation product of the larger (parent) one.
View Article and Find Full Text PDFPatients with chronic kidney disease (CKD) are at an increased cardiovascular risk compared with the general population, which is driven, at least in part, by mechanisms that are uniquely associated with kidney disease. In CKD, increased levels of oxidative stress and uraemic retention solutes, including urea and advanced glycation end products, enhance non-enzymatic post-translational modification events, such as protein oxidation, glycation, carbamylation and guanidinylation. Alterations in enzymatic post-translational modifications such as glycosylation, ubiquitination, acetylation and methylation are also detected in CKD.
View Article and Find Full Text PDFChronic kidney disease (CKD) significantly increases cardiovascular risk and mortality, and the accumulation of uremic toxins in the circulation upon kidney failure contributes to this increased risk. We thus performed a screening for potential novel mediators of reduced cardiovascular health starting from dialysate obtained after hemodialysis of patients with CKD. The dialysate was gradually fractionated to increased purity using orthogonal chromatography steps, with each fraction screened for a potential negative impact on the metabolic activity of cardiomyocytes using a high-throughput MTT-assay, until ultimately a highly purified fraction with strong effects on cardiomyocyte health was retained.
View Article and Find Full Text PDFThe crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies.
View Article and Find Full Text PDFPrevious studies have established the association of sex with gene and protein expression. This study investigated the association of sex with the abundance of endogenous urinary peptides, using capillary electrophoresis-coupled to mass spectrometry (CE-MS) datasets from 2008 healthy individuals and patients with type II diabetes, divided in one discovery and two validation cohorts. Statistical analysis using the Mann-Whitney test, adjusted for multiple testing, revealed 143 sex-associated peptides in the discovery cohort.
View Article and Find Full Text PDFType II diabetes mellitus (T2DM) accounts for approximately 90% of all diabetes mellitus cases in the world. Glucagon-like peptide-1 receptor (GLP-1R) agonists have established an increased capability to target directly or indirectly six core defects associated with T2DM, while the underlying molecular mechanisms of these pharmacological effects are not fully known. This exploratory study was conducted to analyze the effect of treatment with GLP-1R agonists on the urinary peptidome of T2DM patients.
View Article and Find Full Text PDFIntermediate filaments (IFs) are major components of the metazoan cytoskeleton. A long-standing debate concerns the question whether IF network organization only reflects or also determines cell and tissue function. Using , we have recently described mutants of the mitogen-activated protein kinase (MAPK) SMA-5 which perturb the organization of the intestinal IF cytoskeleton resulting in luminal widening and cytoplasmic invaginations.
View Article and Find Full Text PDFChronic kidney disease (CKD) is prevalent in 10% of world's adult population. The role of protein glycosylation in causal mechanisms of CKD progression is largely unknown. The aim of this study was to identify urinary O-linked glycopeptides in association to CKD for better characterization of CKD molecular manifestations.
View Article and Find Full Text PDFOpen-heart surgery is associated with high morbidity, with acute kidney injury (AKI) being one of the most commonly observed postoperative complications. Following open-heart surgery, in an observational study we found significantly higher numbers of blood neutrophils in a group of 13 patients with AKI compared to 25 patients without AKI (AKI: 12.9±5.
View Article and Find Full Text PDFBackground: CD4+ T cells critically contribute to the initiation and perturbation of inflammation. When CD4+ T cells enter inflamed tissues, they adapt to hypoxia and oxidative stress conditions, and to a reduction in nutrients. We aimed to investigate how this distinct environment regulates T cell responses within the inflamed joints of patients with childhood rheumatism (JIA) by analyzing the behavior of NRF2-the key regulator of the anti-oxidative stress response-and its signaling pathways.
View Article and Find Full Text PDFAcute kidney injury (AKI) represents a common complication in critically ill patients that is associated with increased morbidity and mortality. In a murine AKI model induced by ischemia/reperfusion injury (IRI), we show that glutamine significantly decreases kidney damage and improves kidney function. We demonstrate that glutamine causes transcriptomic and proteomic reprogramming in murine renal tubular epithelial cells (TECs), resulting in decreased epithelial apoptosis, decreased neutrophil recruitment, and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation.
View Article and Find Full Text PDFBackground: Prostaglandin E (PGE) increases pulmonary vascular permeability by activation of the PGE receptor 3 (EP), which may explain adverse pulmonary effects of the EP/EP receptor agonist sulprostone in patients. In addition, PGE contributes to pulmonary oedema in response to platelet-activating factor (PAF). PAF increases endothelial permeability by recruiting the cation channel transient receptor potential canonical 6 (TRPC6) to endothelial caveolae acid sphingomyelinase (ASMase).
View Article and Find Full Text PDFCollagen is a major component of the extracellular matrix (ECM) and has an imminent role in fibrosis, in, among others, chronic kidney disease (CKD). Collagen alpha-1(I) (col1a1) is the most abundant collagen type and has previously been underlined for its contribution to the disease phenotype. Here, we examined 5000 urinary peptidomic datasets randomly selected from healthy participants or patients with CKD to identify urinary col1a1 fragments and study their abundance, position in the main protein, as well as their correlation with renal function.
View Article and Find Full Text PDFPost-translational modifications (PTMs) generate marginally modified isoforms of native peptides, proteins and lipoproteins thereby regulating protein functions, molecular interactions, and localization. With a key role in functional proteomics, post-translational modifications are recently also associated with the onsets and progressions of various diseases, such as cancer, cardiovascular, renal, and metabolic diseases. With the impact of post-translational modifications becoming increasingly clear, its reliable detection and quantification remain a major obstacle in the translation of these novel pathological markers into clinical diagnosis.
View Article and Find Full Text PDFIn recent years, capillary electrophoresis coupled to mass spectrometry (CE-MS) has been increasingly applied in clinical research especially in the context of chronic and age-associated diseases, such as chronic kidney disease, heart failure and cancer. Biomarkers identified using this technique are already used for diagnosis, prognosis and monitoring of these complex diseases, as well as patient stratification in clinical trials. CE-MS allows for a comprehensive assessment of small molecular weight proteins and peptides (<20 kDa) through the combination of the high resolution and reproducibility of CE and the distinct sensitivity of MS, in a high-throughput system.
View Article and Find Full Text PDFChronic kidney disease (CKD) is accompanied with extensive cardiovascular calcification, in part correlating with functional vitamin K deficiency. Here, we sought to determine causes for vitamin K deficiency beyond reduced dietary intake. Initially, vitamin K uptake and distribution into circulating lipoproteins after a single administration of vitamin K1 plus K2 (menaquinone 4 and menaquinone 7, respectively) was determined in patients on dialysis therapy and healthy individuals.
View Article and Find Full Text PDFSortilin, an intracellular sorting receptor, has been identified as a cardiovascular risk factor in the general population. Patients with chronic kidney disease (CKD) are highly susceptible to develop cardiovascular complications such as calcification. However, specific CKD-induced posttranslational protein modifications of sortilin and their link to cardiovascular calcification remain unknown.
View Article and Find Full Text PDFThe adrenal glands participate in cardiovascular (CV) physiology and the pathophysiology of CV diseases through their effects on sodium and water metabolism, vascular tone and cardiac function. In the present study, we identified a new adrenal compound controlling mesenchymal cell differentiation that regulates osteoblastic differentiation in the context of vascular calcification. This peptide was named the "calcification blocking factor" (CBF) due to its protective effect against vascular calcification and is released from chromogranin A via enzymatic cleavage by calpain 1 and kallikrein.
View Article and Find Full Text PDFBackground: Coexistent CKD and cardiovascular diseases are highly prevalent in Western populations and account for substantial mortality. We recently found that apolipoprotein C-3 (ApoC3), a major constituent of triglyceride-rich lipoproteins, induces sterile systemic inflammation by activating the NOD-like receptor protein-3 (NLRP3) inflammasome in human monocytes via an alternative pathway.
Methods: To identify posttranslational modifications of ApoC3 in patients with CKD, we used mass spectrometry to analyze ApoC3 from such patients and from healthy individuals.
Despite the introduction of lipid-lowering drugs, antihypertensives, antiplatelet and anticoagulation therapies for primary prevention of cardiovascular and heart diseases (CVD), it remains the number one cause of death globally, raising the question for novel/further essential factors besides traditional risk factors such as cholesterol, blood pressure and coagulation. With continuous identification and characterization of non-enzymatic post-translationally modified isoforms of proteins and lipoproteins, it is becoming increasingly clear that irreversible non-enzymatic post-translational modifications (nPTMs) alter the biological functions of native proteins and lipoproteins thereby transforming innate serum components into CVD mediators. In particular renal insufficiency and metabolic imbalance are major contributors to the systemically increased concentration of reactive metabolites and thus increased frequency of nPTMs, promoting multi-morbid disease development centering around cardiovascular disease.
View Article and Find Full Text PDF