Mutations in tumor suppressor genes, such as Tumor Protein 53 (TP53), are heavily implicated in aggressive cancers giving rise to gain- and loss-of-function phenotypes. While individual domains of the p53 protein have been studied extensively, structural information for full-length p53 remains incomplete. Functionalized microprocessor chips (microchips) with properties amenable to electron microscopy permitted us to visualize complete p53 assemblies for the first time.
View Article and Find Full Text PDFAstrocyte activation is crucial for wound contraction and glial scar formation following central nervous system injury, but the mechanism by which activation leads to astrocyte contractility and matrix reorganization in the central nervous system (CNS) is unknown. Current means to measure cell traction forces within three-dimensional scaffolds are limited to analyzing individual or small groups of cells, within extracellular matrices, whereas gap junctions and other cell-cell adhesions connect astrocytes to form a functional syncytium within the glial scar. Here, we measure the viscoelastic properties of cell-seeded hydrogels to yield insight into the collective contractility of astrocytes as they exert tension on the surrounding matrix and change its bulk mechanical properties.
View Article and Find Full Text PDF